ATTACHMENT E

CULTURAL HERITAGE MANAGEMENT PLAN
90 HARMONS ROAD, FOSTER
RESIDENTIAL SUBDIVISION

CULTURAL HERITAGE MANAGEMENT PLAN

No 10572

Sponsored by Mr G. Goldie

Completed 11th January 2010

Heritage Advisors & Authors
Andrea Murphy & Laurinda Dugay-Grist

Tardis Enterprises Pty Ltd
archaeologists and heritage advisors

Suite 4, 46–50 Old Princes Hwy
Beaconsfield
Victoria 3807
90 HARMONS ROAD, FOSTER
RESIDENTIAL SUBDIVISION
CULTURAL HERITAGE MANAGEMENT PLAN

AAV Management Plan Identifier: 10572

Sponsor: Mr G. Goldie

Cultural Heritage Advisor: Andrea Murphy & Laurinda Dugay-Grist
 Tardis Enterprises Pty Ltd

Author(s) of Management Plan: Andrea Murphy & Laurinda Dugay-Grist

Management Plan Completion Date: December 11th, 2010

The intellectual property within this report and the primary research material therein are the property of Tardis Enterprises Pty Ltd (Project No 8901109.100) and may NOT be used, reproduced or distributed in any way without prior written consent from Tardis Enterprises Pty Ltd.

Ethnographic information that has been provided by Aboriginal people and included in this report is the property of the Aboriginal community to which the informant/s is/are representing at the time the information was given. Such information may NOT be reproduced or distributed in any way without prior written permission from that community.

Any advice and/or opinions offered within this report by Tardis Enterprises Pty Ltd does not constitute legal advice or represent those of any third party.

This report remains the property of the Sponsor. It may NOT be used, reproduced or distributed in any way without prior written consent from the Sponsor.
I, Joy Elley, Acting Deputy Director, Aboriginal Affairs Victoria, acting under authority delegated to me by the Secretary, Department of Planning and Community Development, hereby approve the cultural heritage management plan referred to below:

90 HARMONS ROAD, FOSTER RESIDENTIAL SUBDIVISION

Cultural Heritage Management Plan number: 10572

Sponsor: Mr G. Goldie

Cultural Heritage Advisors: Andrea Murphy and Laurinda Dugay-Grist
[Tardis Enterprises Pty Ltd]

Authors: Andrea Murphy and Laurinda Dugay-Grist

Cover Date: 11 January 2010

Pages: vii + 138

Received for Approval: 11 January 2010

Pursuant to s.65(6) of the Act this cultural heritage management plan takes effect upon the granting of this approval.*

Signed: Joy Elley

Joy Elley

Dated: 13/1/2010

* This notice of approval should be inserted after the title page and bound with the body of the management plan.
This mandatory cultural heritage management plan (CHMP) has been prepared by Tardis Enterprises Pty Ltd under the Aboriginal Heritage Act 2006 (s.46) and Aboriginal Heritage Regulations 2007 (63 (1) (b). and Sponsored by landowner Mr Graham Goldie. The activity area is located at 90 Harmons Road, Foster (CA 42A). Foster is located within the Shire of South Gippsland and the Parish of Wonga Wonga South (Map 1). The activity area comprises land covering 24.94 hectares at the western end of Harmons Road, Foster (Map 1). The activity area is bounded on all sides by private farmland.

The activity comprises a low density residential subdivision. The activity area will be divided into 14 residential lots of between one and three hectares in size (Map 2). Subdivision plans provided by Beveridge Williams Pty. Ltd. indicate two roads entering into the subdivision and extending to the north and south and ending in a court. Each of the fourteen blocks will be accessed via these roads (Map 2). The existing residence, shed and tank will remain. The impact on the surface of the land and buried former land surfaces could potentially be significant and possibly harm any Aboriginal cultural heritage, if present.

At the time of commencement of this CHMP there was no Registered Aboriginal Party (RAP) in relation to the proposed activity area; therefore, as required under Section 54 of the Aboriginal Heritage Act 2006 a Notice of Intent to Prepare a Cultural Heritage Management Plan was submitted to Aboriginal Affairs Victoria by Beveridge Williams Pty Ltd on behalf of the Sponsor (Appendix 2). Aboriginal Affairs Victoria notified Mr Gary Chisholm of Beveridge Williams on 18th September 2008 that they would evaluate the plan when completed and allocated CHMP number 10572 to the project (Appendix 3). Appendix 12 contains a log of all communications associated with preparation of this plan.

According to the Aboriginal Heritage Regulations 2007 there is a section of the activity area that is located within a specified area of cultural heritage sensitivity. A named waterway ‘Golden Creek’ intersects the south western section of the activity area (Map 2) and is identified as culturally sensitive and is therefore a trigger under the Act (r. 23 (1)) to prepare a mandatory CHMP. Under the Regulations, a cultural heritage management plan is required if the activity lies within a specified area of cultural sensitivity and is a high impact activity. A high impact activity is one that would result in significant topsoil disturbance and involves a use of land specified in the regulations. The subdivision of land into three or more lots is a high impact activity if at least three of the lots may be used for a dwelling and the area of at least three of the lots is less than eight hectares is a high impact activity under Regulation 46 (1) (a) and (b). If the specified area of cultural sensitivity has been subject to significant ground disturbance, then a cultural heritage management plan is not required. Significant ground disturbance is the removal or significant disturbance of topsoil by machinery in the course of grading, excavating, digging or dredging (AHR 2007: 4). The activity area has been subject to disturbance in the form of clearing and grazing, however these are not considered to be high impact activities under the Aboriginal Heritage Regulations 2007. There are small areas of significant disturbance within the activity area, including the existing dwelling and associated shed and water tank and several dams, located along drainage channels and to the north-east of Golden Creek (Map 2).

This CHMP consists of desktop (Section 3), standard (Section 4) and complex (Section 5) assessments.
EXECUTIVE SUMMARY

Summary of Desktop Assessment Results

The results of the desktop assessment indicated that there are no previously recorded archaeological or historic Aboriginal sites within the activity area and the activity area has not been subject to prior ground surface survey. The closest recorded archaeological sites are located on coastal landforms to the south and west of the activity area. Dates of site formation are predominantly based on technological attributes, which place all sites within the last 7,000 years. The C14 evidence also dates the coastal sites to approximately 6,500BP.

Within the activity area, Golden Creek and the un-named creek and drainage lines are considered to be potentially sensitive for Aboriginal archaeological sites. Although the activity area is of limited strategic value, level, protected areas near to these waterways were considered likely to contain small lithic/cultural sites of low scientific significance. In addition, the ridges adjacent to the waterways are also likely to have lithic/cultural material in very low density. Aboriginal scared trees will not be located in the activity area due to prior vegetation clearance and an absence of indigenous aged trees. The desktop assessment concluded it would be highly unlikely that a site of high scientific significance would be present within the activity area.

Summary of Standard Assessment Results

No evidence of occupation and exploitation by pre-contact Aboriginal people in the past was recorded within the activity area during the standard assessment. The result was considered to reflect the poor ground surface visibility at the time of the field survey, particularly in the areas considered to have some potential for cultural material. A complex assessment was (AHR 2007: 60) required to assess whether Aboriginal heritage is present within the activity area.

Summary of Complex Assessment Results

The complex assessment comprised five one by one metre controlled excavated test pits (Map 8), plus twelve controlled excavated forty by forty centimetre test pits (Section 5). As a result of the complex assessment, one low density subsurface stone artefact scatter comprising a single stone artefact was located and has been registered with AAV as VAHR 8120-0226 (Map 9). As required under the Aboriginal Heritage Act 2006, the nature, extent and significance of the site was determined (Regulation 60; Aboriginal Heritage Regulations 2007). The artefact has been bagged and labelled according to proper archaeological practise, and once the plan is approved will be provided to the RAP applicant group.

With the exception of the one artefact at VAHR 8120-0226, no other evidence of occupation or exploitation by pre-contact Aboriginal people was recorded within the activity area during the preparation of this plan. The results are considered to accurately reflect pre-Contact Aboriginal behaviour (which is of transitory and infrequent use) and it is determined that it is highly unlikely that the activity will result in harm to Aboriginal cultural heritage within the activity area. However, in order to manage this risk, a Contingency Plan is presented to deal with the discovery of any Aboriginal cultural heritage during the construction activity associated with the development of the activity area (Section 8).
EXECUTIVE SUMMARY

VAHR 8120-0226 has been assessed as being of very low scientific significance and of no specific cultural significance (Section 6). The RAP applicant group who participated in this plan (Section 1.3) were requested to provide a formal statement of cultural significance, however, none was provided at the time of submission.

The contents of the registered site were collected during the complex assessment and therefore the physical remains of this site will not be impacted by the proposed development. As this site cannot contribute to current research questions no salvage is required. There are no further management requirements regarding the Aboriginal cultural heritage of VAHR 8120-0226.

Specific Recommendations (Section 7.1)

Once this CHMP has been approved, the following recommendations become mandatory requirements. Based on the scientific findings of this report the following recommendations are made:

Prior to Activity:

Recommendation 1: VAHR 8120-0226

Sub-surface stone artefact scatter site VAHR 8120-0226 HR 1 has very low scientific and no specific cultural significance (Tables 2, 3 4). The extent, nature and significance of the site were determined during the assessment as required under Regulation 60 (Aboriginal Heritage Regulations 2007).

The contents of the registered site were collected during the complex assessment and therefore no physical remains of the site will be impacted by the activity. Sub-surface investigations revealed that the site is an isolated sub-surface find of indeterminate origin.

No additional Aboriginal cultural materials or deposits were located during the complex assessment. It is considered highly unlikely that salvage excavations will recover additional stone artefacts that will further contribute to the scientific or cultural knowledge of the site beyond that already demonstrated during the complex assessment. Based on the incapacity of this site to address current research questions, no archaeological salvage is recommended. No harm avoidance, minimisation or management measures are required prior to the activity commencing.

During Activity:

Recommendation 2: Contingency Plans (Section 8)

Any discovery of Aboriginal cultural heritage outside the expectations of the CHMP is to be dealt with by the Contingency Plans in Section 8. The Sponsor should take particular note of the Contingency Plan for the Discovery of Human Remains.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Extent of Activity Area Covered by the CHMP</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Activity Description</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Consultation</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Report Submission</td>
<td>6</td>
</tr>
<tr>
<td>THE ACTIVITY AREA</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Description of the Activity Area</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Land Use History</td>
<td>8</td>
</tr>
<tr>
<td>DESKTOP ASSESSMENT</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Review of Landforms and Geomorphology</td>
<td>11</td>
</tr>
<tr>
<td>3.1.1 Pleistocene and Early Holocene</td>
<td>11</td>
</tr>
<tr>
<td>3.1.2 Geology and Landform</td>
<td>12</td>
</tr>
<tr>
<td>3.1.3 Flora and Fauna</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Ethnohistory</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Resources Available to Aboriginal People</td>
<td>20</td>
</tr>
<tr>
<td>3.4 Victorian Aboriginal Heritage Register</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1 Previously Recorded Aboriginal Sites</td>
<td>23</td>
</tr>
<tr>
<td>3.4.2 Previous Aboriginal Cultural Heritage Investigations</td>
<td>24</td>
</tr>
<tr>
<td>3.4.3 Aboriginal Site Prediction Model for the Proposed Activity Area and Implications</td>
<td>28</td>
</tr>
<tr>
<td>STANDARD ASSESSMENT</td>
<td>28</td>
</tr>
<tr>
<td>4.1 Field Survey Methodology, Coverage and Ground Surface Visibility</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Standard Assessment: Survey Results</td>
<td>32</td>
</tr>
<tr>
<td>4.2.1 Aboriginal Cultural Heritage: Discussion</td>
<td>32</td>
</tr>
<tr>
<td>COMPLEX ASSESSMENT: SUBSURFACE TESTING</td>
<td>33</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>5.2 Sub-surface Testing Methodology</td>
<td>33</td>
</tr>
<tr>
<td>5.3 Obstacles Encountered During Complex Assessment</td>
<td>34</td>
</tr>
<tr>
<td>5.4 Complex Assessment: Results</td>
<td>34</td>
</tr>
<tr>
<td>5.4.1 Introduction</td>
<td>34</td>
</tr>
<tr>
<td>5.5 Site Details</td>
<td>37</td>
</tr>
<tr>
<td>5.6 Discussion of Stratigraphy, Nature & Extent of Site</td>
<td>39</td>
</tr>
<tr>
<td>5.6.1 Survey Unit 1</td>
<td>39</td>
</tr>
<tr>
<td>5.6.2 Survey Unit 2</td>
<td>39</td>
</tr>
<tr>
<td>ASSESSMENT OF SCIENTIFIC AND CULTURAL SIGNIFICANCE</td>
<td>40</td>
</tr>
<tr>
<td>6.1 Aboriginal Cultural Significance</td>
<td>40</td>
</tr>
<tr>
<td>6.2 Discussion – Cultural Significance</td>
<td>41</td>
</tr>
<tr>
<td>6.3 Scientific Significance Assessment</td>
<td>41</td>
</tr>
<tr>
<td>6.4 Research Questions</td>
<td>42</td>
</tr>
</tbody>
</table>
6.5 Research Potential
6.6 Statement of Significance

7 CULTURAL HERITAGE MANAGEMENT ISSUES & RECOMMENDATIONS

7.1 Specific Recommendations

8 ABORIGINAL CULTURAL HERITAGE MANAGEMENT CONTINGENCIES

8.1 Contingency for the Discovery of Aboriginal Cultural Heritage During any Activity
8.2 Contingency Plan for the Discovery of Skeletal Remains
8.3 Dispute Resolution
8.4 Non Compliance with the Cultural Heritage Management Plan
8.5 Changes to Activity
8.6 Compliance Checklist

REFERENCES

FIGURES

1
2 Stratigraphic Profile Test Pit 1
3 Stratigraphic Profile Test Pit 2
4 Stratigraphic Profile Test Pit 3
5 Stratigraphic Profile Test Pit 4

MAPS

1 Activity Area Location
2 Existing Conditions & Proposed Subdivision
3 1972 Aerial Photograph
4 Geology of Activity Area
5 Pre 1750 Ecological Vegetation
6 Aboriginal Clans from Bulmer
7 Survey Units & Culturally Sensitive Area
8 Location of Test Pits and Shovel Probes
9 Location of Place VAHR 8120 - 0226

PLATES (In Text)

Plate 1 VAHR 8120-0226 Site Contents
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>APPENDICIES</th>
<th>PAGE No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1 Site Gazeteer</td>
<td>62</td>
</tr>
<tr>
<td>Appendix 2 CHMP Notification</td>
<td>64</td>
</tr>
<tr>
<td>Appendix 3 AAV CHMP Acknowledgement</td>
<td>72</td>
</tr>
<tr>
<td>Appendix 4 Photographs:</td>
<td></td>
</tr>
<tr>
<td>Standard Assessment</td>
<td>74</td>
</tr>
<tr>
<td>Complex Assessment</td>
<td>76</td>
</tr>
<tr>
<td>VAHR 8120-0226</td>
<td>77</td>
</tr>
<tr>
<td>Appendix 5 Excavation Results</td>
<td>84</td>
</tr>
<tr>
<td>Appendix 6 Criteria Used for Scientific and Cultural Significance Assessment</td>
<td>94</td>
</tr>
<tr>
<td>Appendix 7 Historical Report</td>
<td>103</td>
</tr>
<tr>
<td>Appendix 8 Summary of Legislation</td>
<td>117</td>
</tr>
<tr>
<td>Appendix 9 Summary CV’s</td>
<td>120</td>
</tr>
<tr>
<td>Appendix 10 Checklist for Compliance</td>
<td>125</td>
</tr>
<tr>
<td>Appendix 11 Glossary</td>
<td>127</td>
</tr>
<tr>
<td>Appendix 12 Correspondence Log</td>
<td>132</td>
</tr>
</tbody>
</table>

TABLES (In Text)

Table 1 Summary Description of the Survey Units	30
Table 2 Aesthetic, Historic & Social Significance Assessment	40
Table 3 Scientific Significance of VAHR 8120-0226	41
Table 4 Aboriginal Sites: Cultural & Scientific Significance Summary	44
Table 5 Results of Test Pit Excavations (Appendix 5)	85
Table 6 Results of Shovel Probe Excavations (Appendix 5)	88

ACKNOWLEDGEMENTS

Tardis Enterprises Pty Ltd would like to thank the following people for their assistance:

- Mr Garry Chisholm – _Beveridge Williams & Co. Pty Ltd_
- Mr Russell Mullet, Mr Lloyd Hood & Mr Shannon Hood - _Gunaikurnai Land and Water Aboriginal Corporation_
- Ms Joanna Freslov – _AAV Regional Office Bairnsdale_
- Mr Graham Goldie – _Land Owner/Sponsor_
- Mr Chris Vickers - _Historian_
ABBREVIATIONS

AAV Heritage Services Branch, Aboriginal Affairs Victoria
AHC Aboriginal Heritage Council (Victoria)
asl above sea level
ASTT Australian Small Tool Tradition
BP Before Present
GKLWAC Gunai Kurnai Land and Water Aboriginal Corporation
CHMP Cultural Heritage Management Plan
CHP Cultural Heritage Permit
DPCD Department of Planning and Community Development
DSE Department of Sustainability and Environment
GPS Global Positioning System
LV Land Victoria
NoI Notice of Intent to Prepare a Cultural Heritage Management Plan
PRP Primary Reference Point
RAP Registered Aboriginal Party
RP Relocatable Point
SLV State Library of Victoria
VAHR Victorian Aboriginal Heritage Register, Aboriginal Affairs Victoria

* Throughout this plan several technical terms are used that may not be familiar to some readers. An extensive glossary has been included as Appendix 11 and should be referenced for an explanation of terms.
1 INTRODUCTION

This mandatory cultural heritage management plan (CHMP) has been prepared by Tardis Enterprises Pty Ltd in accordance with the *Aboriginal Heritage Act 2006* (s.46) and *Aboriginal Heritage Regulations 2007* (63 (1) (b). and Sponsored by landowner Mr Graham Goldie. Tardis Enterprises Pty Ltd personal Andrea Murphy MAACAI (Project Director) and Laurinda Dugay-Grist (Project Manager) are the heritage advisors and authors of this plan. Andrea Murphy (B.A. MA Prelim) has more than twenty years industry experience and Laurinda Dugay-Grist (B.A. Hons, MA, PhD Candidate) has over ten years consulting experience (Appendix 9 – Summary CV’s).

The activity area is located at 90 Harmons Road, Foster (Map 1) (Part of C.A. 42A, Section C, Plan of Sub. 142286). Foster is located within the local government area of the South Gippsland Shire Council and within the Parish of Wonga Wonga.

Under the Regulations an Aboriginal Cultural Heritage Management Plan is required if –

a) All or part of the activity area for the activity is an area of cultural heritage sensitivity; and;

b) All or part of the activity is a high impact activity.

According to the *Aboriginal Heritage Regulations 2007* there is a section of the activity area that is located within a specified area of cultural heritage sensitivity. A named waterway ‘Golden Creek’ intersects the southern corner of the activity area from west to east (Map 2) and is identified as culturally sensitive and is therefore a trigger under the Act (r. 23 (1)).

Under the Regulations, a cultural heritage management plan is required if the activity lies within a specified area of cultural sensitivity and is a high impact activity. A high impact activity is one that would result in significant topsoil disturbance and involves a use of land specified in the regulations. The subdivision of land into three or more lots if at least three of the lots may be used for a dwelling and the area of at least three of the lots is less than eight hectares is a high impact activity under Regulation 46 (1) (a) and (b). If the specified area of cultural sensitivity has been subject to significant ground disturbance, then a cultural heritage management plan is not required. Significant ground disturbance is the removal or significant disturbance of topsoil by machinery in the course of grading, excavating, digging or dredging (AHR 2007: r. 4). The activity area has been subject to disturbance in the form of clearing, ploughing and grazing, however these are not considered to be high impact activities under the *Aboriginal Heritage Regulations 2007*.

The aims of the management plan are to provide:

- A clear description of the Aboriginal cultural heritage values of the activity area, based on collated existing data and results of a site survey;
- An appraisal of any implications for the project arising from relevant legislation or policy;
- An objective assessment of the potential impacts of the development on these values and on local or regional Aboriginal archaeological values;
- A description of any opportunities to avoid or mitigate these potential impacts through design or management;
• An assessment of the likely resultant level of impacts if mitigation measures are adopted;
• Any other information on Aboriginal archaeological matters relevant to the project;
• A contingency plan to effectively manage any Aboriginal heritage discovered during the construction phase of the activity.

The CHMP has been undertaken according to the ‘Guide to Preparing Cultural Heritage Management Plans’ (AAV 2007).

1.1 Extent of the Activity Area Covered By the Management Plan

The activity area is located within a parcel of land covering 24.94 hectares at the western end of Harmons Road, Foster (Map 1). The land is described as Lot 2 on Plan of Subdivision 142286, Volume 09509, Folio 787. Golden Creek extends across the southern corner of the activity area flowing west to east toward Corner Inlet. The creek and adjacent flood plain up to 200m are defined as culturally sensitive landforms according to Aboriginal Heritage Regulations 2007 (r. 23 (1)).

The activity area is bound by private farmland on all sides. The vegetation cover of the activity area largely consists of introduced pastoral grasses and weeds and several mature Eucalypt trees. The land is currently used for cattle grazing (Appendix 4 Standard Assessment Photographs 1 to 5).

The highest elevation within the activity area is 150m a.s.l. in the western part and the lowest is 65 m asl. along the south eastern boundary (Map 1).

The CHMP is applicable for the entire activity area as detailed in Maps 1 and 2, and includes all land known as 90 Harmons Road, Foster.
Map 1 Activity Area Location

(VicRoads Ref: 103 C5)

Legend:

Denotes Activity Area

Parish: Wonga Wonga South
LGA: South Gippsland

Topographic map used for Location Plan: 1:30,000 Number T8120-3-1-4, 3-4-1, 4-2-3 & 4-3-2

Tardis Enterprises Pty Ltd, archaeologists & heritage advisors
PROPOSED PLAN OF SUBDIVISION
COUNTY OF BULN BULN
PARISH OF WONGA WONGA SOUTH
SECTION C
CROWN ALLOTMENT 42A (Pt)

Map 2 Existing Conditions & Proposed Subdivision
1.2 Activity Description

Landowner and Sponsor Graham Goldie intends to develop the activity area as a low density residential subdivision. The activity area will be divided into 14 residential lots of between one and three hectares in size (Map 2). Subdivision plans by Beveridge Williams Pty. Ltd. (Map 2) indicate that two roads will enter the subdivision and extend to the north and south and terminate in a court. Each of the fourteen blocks will be accessed via these roads (Map 2). The existing residence, shed and tank will remain on a separate title. Once the CHMP has been approved and planning approval obtained, the lots will be sold for future residential development. Each lot will eventually contain a single residence and associated outbuildings and will be serviced with infrastructure and underground utilities. Subsurface impact associated with the installation of utilities will extend down to 750mm with conduits located under roads. Subsurface impact associated with road construction is expected to extend down a maximum of between 1500 to 2000mm, with maximum depths only reached on sloping sections of the activity area (Gary Chisholm Pers. Comm. 2009).

It is anticipated that the following activities will be undertaken during the road construction and land subdivision process:

- Topsoil stripping to subsoil where necessary, predominantly in areas of road construction;
- Deep trenching into subsoil (up to approximately 750mm) to install utilities to each lot – including sewers, water and storm water;
- Landscaping works impacting on topsoil deposits;
- Concreting works, including driveways, paths and patios;
- Residential construction (e.g. slab construction) possibly including tennis courts and swimming pools STCA;
- Other works as may be required for residential subdivision and building construction,

The impact on current and prior land surfaces within defined areas of development and construction will be extensive, consisting of the removal of all topsoil to approximately 300mm and localised deeper trenching into sub-soils as required for service utilities and foundation trenches. The extent of impact within the activity area will depend upon the owners of each allotment created through subdivision of the land (e.g. installation of a swimming pool). The development of each lot will need to address the applicable requirements of the Shire of South Gippsland Planning Scheme, including zoning and overlay provisions. The activity will confirm to the guidelines associated with Residential Use Zone under the local planning scheme.

The extensive nature of soil modification during residential development means that there is a high possibility that any archaeological sites present within the topsoil may be harmed during the construction process. Cultural materials most vulnerable to destruction are those made from organic material such as bone, shell, wood and fibre. Stone artefacts are unlikely to be destroyed unless by direct impact (e.g. machinery). In this case, stone artefacts would be re-distributed throughout the development, provided topsoil is not removed from site. Adverse impact can generally be minimised through design and site/area management. Areas where surface soils are subject to earth moving will directly impact any surface Aboriginal sites, such as scatters of stone tools and any mature gums.
that are removed may impact a scarred tree site. Overall, residential development can have a very high adverse impact to intact archaeological sites unless mitigation measures are adopted. Impact to already disturbed cultural material is not considered as highly significant.

1.3 Consultation

At the time of commencement of this CHMP there was no Registered Aboriginal Party (RAP) in relation to the proposed activity area; therefore, as required under Section 54 of the Aboriginal Heritage Act 2006 a Notice of Intent to Prepare a Cultural Heritage Management Plan was submitted to Aboriginal Affairs Victoria by Gary Chisholm of Beveridge Williams & Co. Pty Ltd on behalf of the Sponsor (Appendix 2). Aboriginal Affairs Victoria notified Beveridge Williams & Co on 18th September 2008 that they would evaluate the plan when completed and allocated CHMP number 10572 to the project (Appendix 3). Appendix 12 contains a log of all communications with all stakeholders associated with preparation of this plan.

The Gunai/Kurnai Land and Waters Aboriginal Corporation (GKLWAC) received RAP status for the activity area on 23rd May, 2008. The application to AAV assess this CHMP was made prior to their registration - AAV have acknowledged their intention to assess this CHMP. Additionally, the GKLWAC have consulted with throughout the preparation of this plan and informed the cultural heritage advisors (Tardis Enterprises Pty Ltd) that AAV are continuing to assess CHMP’s within their registered boundaries until further notice (Sandra Patten pers. comm. 28.5.2008). Russel Mullet (GKLWAC) was consulted during the standard phase of the assessment and Lloyd Hood (GKLWAC) was consulted during the complex phase of the assessment. Shannon Hood represented the GKLWAC during the excavations that took places as part of the complex assessment (Appendix 12).

The GKLWAC representatives were also consulted regarding specific traditional knowledge of the activity area (via phone requests and personal communications in the field). The GKLWAC representatives present did not indicate that the group had specific traditional knowledge of the activity area (in accordance with the definition of cultural significance AHA 2006).

The site register at Heritage Services Branch, AAV and the Register of the National Estate were consulted for the presence of previously recorded Aboriginal cultural heritage sites within the proposed activity area.

1.4 Report Submission

As the GKLWAC have informed the cultural heritage advisors (Tardis Enterprises Pty Ltd) that AAV are continuing to assess CHMP’s within their registered boundaries until further notice (Sandra Patten pers. comm. 28.5.2008), the CHMP was sent to the Secretary, Department of Planning and Community Development (DPCD) for review on the 16th December 2009 (Section 65 of the Aboriginal Heritage Act 2006).
2 THE ACTIVITY AREA

2.1 Description of the Activity Area

The activity area is located within a parcel of land (LP 142286) covering 24.94 hectares located at the western end of Harmons Road, Foster (Map 1). The activity area is surrounded by private farmland (Map 2). The activity area is currently owned and occupied by Graham Goldie.

Golden Creek extends across the southern corner of the activity area flowing west to east toward Corner Inlet. The creek and adjacent 200m are defined as culturally sensitive according to Aboriginal Heritage Regulations 2007 (r. 23 (1)). In addition, an un-named creek extends across the north-eastern section of the activity area and several drainage lines extend across the activity area from west to east, draining into the un-named creek (Map 2). Steeply sloping landscape in the west of the activity area extends down to undulating slopes across the centre of the activity area and to low lying floodplain in the east and adjacent to the un-named creek. Golden Creek in the southern corner is deeply incised into the surrounding hill slopes. Four dams have been constructed within the activity area. One dam is located immediately north-west of Golden Creek and the three other dams are all located on drainage lines intersecting sloping land to the west of the un-named creek (Map 2).

There is one existing domestic residence and associated shed and water tank located at the end of the unsealed entrance track in the west of the activity area (Map 2). A small wooden pergola has also been erected adjacent to one of the dams; however there are no other existing built structures within the activity area.

The steep slopes along the western section of the activity area are densely vegetated with native re-growth and occasional introduced and weed species and a block immediately north of the existing residence and surrounding a drainage line has been fenced off and densely vegetated with native re-growth. These areas are subject to development restriction and will not have built structures constructed within them (Map 2).

The vegetation of the land within the activity area largely consists of introduced pastoral grasses and weeds. The steepest slopes along the western section of the activity area and a block to the north of the existing residence are densely vegetated with native re-growth and some introduced tree species (Map 2; Appendix 4 Standard Assessment Photograph 4). In addition, there are several mature Eucalypt trees and the land is currently used for grazing cattle (Appendix 4 Standard Assessment Photographs 1 to 5).

Salient features of the activity area are:

- Golden Creek and the un-named creek;
- Minor drainage lines intersecting the north central section of the activity area;
- Ridge lines and terraces adjacent to Golden Creek;
- Floodplain west of the un-named creek;
- Gently undulating slopes across the majority of the activity area;
- Steep and densely vegetated slopes along the western boundary.
2.2 Land Use History

The South Gippsland area has been settled by Europeans since the 1840s. Gippsland remained largely unexplored until Angus McMillan travelled a route from Melbourne across Gippsland to Port Albert in 1840. At broadly the same time a Polish Count, Sir Paul Edmund de Strzelecki, crossed from the Snowy Mountains moving west to Melbourne via Gippsland (Morgan 1997:23). McMillan subsequently selected land for himself close to Stratford between Sale and Bairnsdale. The swamps (Koo Wee Rup, Moe etc) to the north of Western Port Bay had made overland access into Gippsland difficult and Port Albert became a strategic port for the development of Gippsland. However, there remained a need for a land route between Melbourne and Gippsland for the movement of livestock. A track passing in the vicinity of the activity area is located on an 1864 map of the broader area. The exact location of the track has not been precisely determined (Appendix 7, Figure 5) but did not pass through the present activity area.

Settlement in Gippsland was considerably later than in other parts of Victoria. Many areas were not occupied until after they had been surveyed when the railway was constructed in the 1880’s. Since settlement by Europeans of Gippsland dramatic changes have been made to the landscape.

The historic occupation of the activity area has been reviewed in detail in Appendix 7 – (Historian Report); only summary details are presented in this section.

The activity area is located within the John Hugh Run that was taken up by Joshua Cowell in 1865. There is little information regarding this run and the lease was forfeited in 1868.

The area around Fish Creek/Foster was opened for selection in the 1880’s. In 1889 Harry Farrell of Heidelberg leased 400 acres including the activity area. The landscape is described as hilly with sandy loam and gum, stringy bark, Ti tree and grass tree as the vegetation. No improvements are listed on the application. The lease was cancelled in 1894 due to non payment of the rent.

The Laver family subsequently leased the land until 1911 when it was transferred to farmer James Patterson. The Farrell’s and the Laver’s were both pioneering families in the Fish Creek/Foster District.

In 1920 a new lease was issued to dairy farmer Frederick James Wintle. It was a condition of the lease that improvements were to be carried out on the land. A report dated to 1925 states that a hut of wood and iron and some fencing had been constructed. The lease was again transferred in 1927 with a description of the land as ‘poor, steep country’ with only 80 acres of pasture.

The land was finally purchased by Charles Snell in 1939 and was sub-divided during the 1950’s and 1960’s. The activity area was part of 37 hectares sold to Ronald Harmon in 1978. The property has changed hands several times since the 1970’s and was purchased by the current owners (Goldie) in 1985. The land appears to have been of marginal use for agricultural purposes due to the steepness of the western section of the property. There is no evidence to indicate that the land was used for anything other than grazing purposes.
Examination of an archival air photograph of the activity area (Map 3) reveals that the majority of the activity area has been cleared of all native trees at this time. Some vegetation remains along the creek banks. The dwelling and associated building are in place and there is a track crossing the creek in the north east. The activity area has also been subject to repeated ploughing. The existing dams are not visible on the 1972 aerial (Map 3).

European settlement, clearing and ongoing agricultural use would have significantly impacted on archaeological sites in the activity area. In many instances, cultural material (such as stone tools) would have been disturbed, re-deposited, or even destroyed. Many scarred tree sites that would have been common on the Eucalypts through-out the broader region may have been destroyed by tree clearance. Other activities, such as repeated ploughing, construction of electric pylons and drain excavation would all have impacted some *in situ* Aboriginal cultural heritage sites and artefacts that existed in the activity area.

The impact of previous European land use means that any surface lithic site would now retain little spatial or temporal integrity and as such have reduced scientific significance. However, there remains potential for undisturbed cultural deposits just below the ground surface.

In summary, archaeological resources within the activity area may have been significantly degraded by:

- clearing of pre-contact vegetation;
- repeated and long-term ploughing;
- long-term intensive grazing;
- dam construction;
- increased erosion rates along creek line and increased incline areas;
- increased alluvialation in areas of low gradient.
Legend:

() Denotes Activity Area

Map 3 1972 Aerial Photograph (Run 7)
(Film 168 Run 7)
3 DESKTOP ASSESSMENT

3.1 Review of Landforms and Geomorphology

The importance of understanding the past and present environment is two-fold. Firstly, it is the pre-European settlement environment that was the evolving context for Aboriginal land use in the region. Secondly, to understand the changes in the environment since European settlement is to bring an understanding of what Aboriginal archaeological sites may have survived and their potential location.

Over the longer term the area has witnessed dramatic changes, all of which are associated with fluctuating sea levels and related climate changes.

3.1.1 Pleistocene and Early Holocene

The Pleistocene and early Holocene environment within and surrounding the activity area was one of gradual and continuous change. As Aboriginal people are known to have occupied south-eastern Australia during the late Pleistocene (c. 40,000 to 10,000 years B.P.) from archaeological evidence at Keilor (Coutts et al. 1976), Hunter Island (Bowdler 1979), Bend Road (Hewitt and De Lange 2007), and Clogg’s Cave in the Southern Uplands (Flood 1980, 1983). In Gippsland, the excavation of Clogg’s Cave near Buchan in 1971 revealed human occupation deposits dating to the ice age. The earliest date from Clogg’s Cave was 17,120 ± 840 BP (Flood 1980: 254-275; 1983: 25-28, 252). From the archaeological evidence, Flood (et al 1987 in Lourandos 1997: 237) surmised that the human occupation of the sub-alpine region of the Southern Uplands might only date to the last 20,000 years. Lourandos (1997: 237) believes that a general pattern of intensification of human occupation of this region may have occurred in Gippsland hills over the last 3,000 years.

During the Pleistocene, sea levels were, in general, much lower than at present. In the late Pleistocene, the sea was low enough for a land bridge, the Bassian Plain, to exist across what is now Bass Strait, between south Gippsland and Tasmania. Wilsons Promontory would have existed as a rocky mountain range rising from plains to the east and west. At around 13,000 years B.P. Lake Bass would have extended over approximately 110km x 260km and to a depth of 16m. Approximately 18,000 years BP (Appendix 11 – Glossary), sea levels began to rise slowly and it was not until about 10,000 years B.P. that Port Phillip Bay became inundated by the sea (Marsden & Mallet 1975: 114-116). Evidence indicates that in this region the sea reached its present levels at approximately 8,000 B.P. The archaeological implications of these periods are that they provide different sets of resources for the human populations inhabiting the area. The effect of these climatic changes would have significant impact for the activity area in terms of exploitation by Aborigines throughout the past 40,000 years. In a study of pollens from forest areas in South Eastern Australia (Dodson et al 1992), a general picture of climatic change in the region of the activity area has been formulated. Briefly these changes are:

20,000 - 15,000 years – Dry, cold and windy with reduced vegetation and water sources.
15,000 - 12,000 years – Drier still but slightly warmer
12,000 - 8,000 years – Becoming wetter
8,000 - 5,000 years – Wetter and warmer than at present
5,000 to present – Cooler and drier
The past climate regime indicates that due to the more moderate conditions, the last 12,000 years may have been more conducive to exploitation in the Foster area and its surrounds by Aboriginal people than the earlier period between 12,000 and 20,000 years.

The activity area’s climate is temperate. The average temperature ranges from an annual minimum of 9 to 12°C to a maximum of 18 to 21°C. The average annual rainfall varies between 1050mm at Wilsons Promontory to 810mm inland (Bureau of Meteorology website).

3.1.2 Geology and Landform

The activity area is located to west of Corner Inlet and north-west of Wilsons Promontory and within the West Gippsland catchment system that extends from the Great Dividing Range south to Wilsons Promontory and from the Gippsland Lakes to the west of Warragul. The landscape is predominantly comprised of undulating hills with numerous drainage lines. The western section of the activity area is extremely steep, with undulating slopes extending east to an un-named creek and an adjacent alluvial flat. In addition to the un-named creek that extends along the eastern section of the activity area, Golden Creek intersects the south western section of the activity area. Quartz can be seen eroding from areas of exposure adjacent to Golden Creek. The majority of the activity area drains, via several drainage gullies into the un-named creek and eventually into Corner Inlet (Map 2).

The activity area is located on the eastern face (therefore reasonably sheltered) of steep to moderately sloping hills, with a clear view to Wilsons Promontory to the south-east. The Wilsons Promontory batholith is estimated to extend over an area of approximately 2,000 square kilometres, of which 75% is submerged. The outcrops of Wilsons Promontory granite are visible as islands surrounding Wilsons Promontory (McConnell & van Waarden 1989: 4). The northern most outcrop is located on the Yanakie Isthmus at Red Bluff. At this location the Mesozoic sediments that dominate the landscape to the north, including the activity area, meet with the Wilsons Promontory granite (Map 4).

The Wilsons Promontory granite is regarded as relatively stable; however a major zone of instability is centred at Foster where numerous faults occur running at both north-south and east-west alignments. Although little is known about the movement of the faults, evidence suggests they have been active since the Cretaceous period through to the present (McConnell & van Warden 1989:2-4). The Waratah Fault line extends immediately west and north-west of the activity area (Map 4).

The soils in the region are all related to the main geomorphic elements and the soils within the activity area and its immediate surrounds show minimal development. The soils are predominantly yellow, mottled, hard and acidic with organic surface horizons and bleached subsurface horizons (McConnell & van Warden 1989: 20). Soils along the flood plain adjacent to the un-named creek are silt laden and can be described as recent.
3.1.3 Flora and Fauna

Prior to European settlement of the activity area, the vegetation consisted of damp and wet forest with some swamp scrub and rainforest (Map 5) – all indicating an area of high rainfall. The Pre 1750 ecological vegetation communities indicate that the damp and wet forest extended across the majority of the activity area, with swamp scrub and rainforest along drainage lines and the un-named creek. The activity area was therefore of limited strategic value in terms of economic potential providing environments for water resources and potentially attracting larger animals for water resources. Wet and rainforest EVC are typically dense are extremely difficult to travel through without defined pathways. If there were traditional pathways the activity area is within ready access to at least seven ecological vegetation communities, each providing slightly different potential resources for pre-Contact Aboriginal people.
Map 5 Pre 1750 Ecological Vegetation (DSE Website)

Activity Area
A variety of Eucalypts are likely to have been located within the activity area including Messmate (Eucalyptus oblique), Brown Stringybark (Eucalyptus baxteri) and Blue Gum (Eucalyptus globules). Secondary plant species include Sweet Wattle (Acacia suaveolens), Spike Wattle (A. oxycedrus), Furze and Yellow Hakea (Hakea ulicina., H nodosa), White Kunzea (Kunzea ambigua) and Prickly Tea-tree (Leptospermum juniperinum). Heaths likely to have been locate within and close to the activity area include Common Heath (Epacris impressa), Coast Beard Heath (Leucopogon laevigatum), Pink Swampheath (Sprengelia incarnate) and Cranberry Heath (Astroloma humilimus). Other ground vegetation includes Austral Bracken (Pteridium esculentum), Austral Grass-tree (Xanthorrhoea australis) and White Correa (Correa Alba). Along the creek lines and sheltered gullies draining into the un-named creek in the eastern section of the activity area there would have been Lilly-pilly (Acmena smithi) and Blackwood (Acacia melanoxylon). Common understory vegetation include Tree fern (Cyathea cunninghamii and Cyathea australis), Blanket leaf (Bedfordia salicina), Banyalla (Pittospurum bicolor), and Forest Clematis (lematis glycinoides) (McConnell & van Waarden 1989: 22-25).

Clearing of the forests within the activity area and broader region has reduced or removed suitable habitats for many native species and opened the environment for introduced species such as rabbits, vermin, foxes and cats. Traditionally the forests provided habitat for many native species including ring-tailed possum, brush tailed possum, Eastern-Grey kangaroo, echidna, potoroo, black wallaby, koala and wombat. Many reptiles and native mice would also have thrived in the local bush land environment (LCC 1980: 106-122).

With the demise of native habitat, the number and range of species that once existed in the region has been greatly reduced. Some of the arboreal and land mammal species which would have been commonplace throughout the activity area are: eastern grey kangaroo, swamp wallaby, potoroo, eastern native cat, brushtail possum, ring-tail possum, horseshoe bat, tiger quoll, native rats, echidna and koala. The creeks and waterways would have provided habitat for fish, eels, platypus, freshwater molluscs and waterfowl and would have attracted larger game such as Wallaby and Kangaroo.

3.2 Ethnohistory

The information used to establish pre-settlement Aboriginal spatial organisation is mostly based on observations made by Europeans during the initial period of Contact and subsequent settlement of the activity area region. The ethnographic record of the Foster/South Gippsland region is scant and the ethnographic record of the Aboriginal occupation of Gippsland is essentially contained within Bulmer (in Vanderwal 1994), Howitt (1904), Smyth (1878) and Fison and Howitt (1880). Howitt resided in Gippsland from the 1860’s until his death in Bairnsdale in 1908. Howitt’s view of Aborigines was deeply influenced by the evolutionary theories current at his time and Aborigines were viewed as examples of the most primitive of societies. However, Howitt took an interest in the Gunai people and collated details from ethnographic accounts, oral histories and other earlier published accounts towards the publication of The Native Tribes of South-eastern Australia.

Prior to Contact, Gippsland was isolated from the Melbourne region to the west and New South Wales to the north. Just as the European explorers faced difficulties entering the Gippsland region, the Gunai Kurnai people were also largely isolated from their Aboriginal neighbours. Geographical barriers of forest, sea, mountains and swamp bounded the area (Wesson 2000: 17). Howitt noted that this relative isolation meant that ceremonies and
visitation rights were rarely shared with external tribal groups (Howitt 1904 in Wesson 2000: 17). The Gunai rarely married or traded outside their tribe prior to European settlement, from which time, marriages began to occur with the Monaro-Omeo people (Wesson 2000: 45).

The activity area is located within an area that has historically caused disagreement and confusion over the boundary between the Gunai/Kurnai and the Bunurung. There is general historical and current consensus that the Bunurung lived to the west of Tarwin River and the Gunai Kurnai lived to the east of Yarram, leaving a large area of land, including Wilsons Promontory and Corner Inlet as unknown (Ellender 2002:10). The early explorers and ethnographers consistently refer to the area as Bunurong territory. Robinson passed through Gippsland in 1844 and recorded that Wilsons Promontory and Cape Liptrap belonged to the Bunurong group the Yowenjerre with the tribal boundary extending north from the Franklin River. In 1853 James Tyers also placed Wilsons Promontory and Corner Inlet in Yowenjerre territory (Ellender 2002:10-11). However, Howitt describes Tarwin River as the boundary with the Gunai Kurnai occupying the Promontory and the left hand side of Anderson’s Inlet and the Bunurong occupying the northeast side of the Inlet (Ellender 2002:11)(Map 6).

Ethnographic records describe ongoing feuds between the Gunai Kurnai and the Bunurong. Robinson (1844) recorded canoes belonging to the natives of Gippsland and was told that the land had belonged to the Yowenjerre a section of the Boongerong, now extinct, extirpated by the Borro borro willum Gippsland Blacks (Robinson 1844 in Ellender 2002:12). Ellender ascribes the boundary shift to approximately 1844 and argues for traditional mechanisms of land succession where a lineage is dying out as an explanation for the change of ownership from Yowenjerre of the Bunurong to Brataulung of the Gunai Kurnai (2002). The nature of traditional occupation of the area would also have been significantly impacted by European occupation and subsequent dislocation of the local Aboriginal groups.

Wilsons Promontory, located to the southeast of the activity area and clearly visible from the activity area held spiritual associations for both the Bunurong and Gunai Kurnai groups. Both the Brataulung and the Bunurong groups have legends within their oral history relating to the existence of a supernatural being called Loan, Lohan or Loo-ern (van Waarden 1989:4). Howitt describes an elderly Brataulung man who said:

‘that the fathers of his people came from the west, from the country where there were a great number of blacks. A Wurundjeri (Woiworung) legend relates that long ago Loan, who may be described as a ‘non-natural man’, wandered from the Yarra River, following the migration of the swans, first to the inlets of Western Port Bay and then to Corner Inlet, between Wilson’s Promontory and the mainland where he took up his abode (Howitt 1948: 243).

According to Howitt the Gunai had no legend of the migration, however they believed that Lohan lived in the mountains of Wilsons Promontory with his wife Lohan-tuka and he was considered to be a ‘guardian of the Brataua clan’ (Howitt 1948: 243 & 485). Howitt records the Brataulung as saying their:

‘Old men had seen him from time to time marching over the mountains with his jag spear over his shoulder. They also believed he watched over them, and that he caused their country to be deadly to strangers’ (Howitt 1948: 485).
It is considered that the activity area has been located within the boundary of the traditional lands of the Gunai/Kurnai language group since the mid nineteenth century. The Gunai Kurnai area is thought to extend geographically from the coast at Cape Liptrap, west of Wilson’s Promontory and east to Point Hicks, including lands extending across the Gippsland Lakes and up to 200 kilometres inland to the Great Diving Range. Howitt described the Gunai as comprised of five clans: the Brataualung, Brayakaulung, Tatungalung, Brabalung and Krautungalung (Howitt 1904: 77). European settlers identified adjacent clans with similar language and lifestyles as ‘tribes’; however it is perhaps more appropriate to understand such groupings as dialect or language groups. Residential groups comprised relatives; however some close acknowledged relatives were not always biological. Howitt described the five clans as speaking:

‘three dialects more or less unintelligible to each other ...The clans were divided into lesser groups each of which had a special name, derived in some cases from their principle locality, while in other cases it was the local group which gave the name to the locality’ (Howitt 1904: 73).

Map 6 Aboriginal Clans from Bulmer (in Vanderwal (ed.) 1994: Figure 2)

According to observations by Bulmer there were two totems relating to the Gunai; men belonged to the Yerang and women to the Djeetgang. The totems are both small birds reflecting the ‘sharing of a common life based on descent through mothers’ (Bulmer in Vanderwal 1994: 73).

The area around Foster, Fish Creek and Wilsons Promontory is thought to have been occupied by the Brataualung (Map 6). According to Fison and Howitt the Brataualung claimed the country from the
Harmons Road, Foster - Cultural Heritage Management Plan 10572

Latrobe River to near Cape Liptrap, and from the southern watershed of the Latrobe River to the sea’ (1880: 227).

Howitt describes three groups within the Brataualung. The Kutwut centred at Agnes River, the Yau-ung, centred at Warrigul Creek and the Drelin from around Merriman’s Creek (Fison and Howitt 1880: 228). Each group was comprised of a number of family units. According to Howitt each clan’s territory was divided into smaller divisions of hunting ground ‘until the unit was a small group of kindred’ (1904: 73).

The estimated numbers of people originally occupying the area varies considerably. Original tribal numbers were based on European observations of varying accuracy. Gardner believes it is likely there were 2,500-3,000 members of Kunai tribes in 1839-40. However, by 1860 the former Assistant Protector of Aborigines and then Chief Guardian of Aborigines in Victoria William Thomas counted only 222 men, women and children (Gardner 1993: 12).

Prior to European settlement in Gippsland C.J. Tyers recorded:

‘The aborigines of Gippsland are supposed to exceed in number those of any other known part of the colony of equal extent… Those inhabiting the country about the lakes, judging from the numerous fires, and the different large parties of them I saw whilst on the lakes cannot be less than a thousand’ (Tyers in Gardner 1994: 34).

Tyers estimated there were approximately 300 Aborigines living along the coast and inland areas from Corner Inlet to Seaspray in 1844. By 1852 he counted only 32 in Port Albert region and by 1863 only 18. In 1879 Howitt describes seven Brataualung remaining in Gippsland (Fison and Howitt 1888: 182). The rapid decline in numbers was the result of dispossession from the land, disease and massacres.

The Gunai would have seen the early explorers, whalers and sealers ships from the Gippsland coastline during the eighteenth century. Whalers and sealers are also thought to have landed and lived intermittently along the coastline. A song recorded by the nineteenth century missionary Rev. John Bulmer tells of white men, noise and guns:

\[\text{mundhanna loormda kathia prappau} \\
\text{There are white men long way off with great noise} \\
\text{Muraskin mundhanna yea a main} \\
\text{Guns there sailing about} \] (Bulmer in Broome 2005: 3).

While it is outside the scope of this project to extensively document the details of Victoria’s Contact period, the most prominent aspects of the period are outlined. The Contact period in the Port Phillip region was one of upheaval. The Kulin tribes, particularly the Woi wurrung and the Bunurong who occupied the Melbourne area, and the European squatters and settlers who had travelled from Van Diemens Land and New South Wales, had relationships that were filled with violent conflict, cross cultural misunderstanding and on occasion, a mutual respect. The implementations of policies and laws imposed by a distant Colonial Government brought about adverse impact on the Aboriginal people, as evidenced across the colonies. The implementation of Aboriginal missions, the Native Police Corps, the Aboriginal Protectorate and the later Aboriginal Reserves all shaped the
fate of the Aboriginal people in the Contact period. In addition to this, Broome (1984: 34) attributes as much as 90 percent of Aboriginal deaths in Victoria’s Contact period to disease, malnutrition, alcohol and violence. Disease had a particularly lethal impact in the populous south-eastern states; however Gippsland appears as one of the few places where observations of small pox scarring were not made, possibly reflecting the sparse contact between the Gunai of Gippsland and other Victorian Aboriginal groups (Broome 2005: 9).

The period of settlement in Gippsland appears to have been one of considerable conflict. Squatters had their own impact, particularly as they claimed vast runs of land for stock grazing. Broome (1984: 23) notes that by 1845, almost all of Victoria was covered with squatting runs that were leased annually and considered to be Crown Land by the Colonial Government, denying Aboriginal rights to the land. During the Contact period, the squatters were often in conflict with local Aboriginal people. The exact causes of each conflict were varied. Disputes may have begun over particular events and land issues and subsequently spread into a broader conflict between settlers and Aborigines (Broome 2005: 69). Attacks and reprisal raids were carried out. One event, known as the ‘first attack’ involved between 200-300 Gunai attacking McMillan’s station near Stratford in 1840 (Gardner 1993: 13). Many more raids and attacks followed. In 1843, in response to the murder of the influential grazier Ronald MacAlister, a number of Scottish families in the area banded together and killed a large number of Aborigines at Warrigal Creek near Woodside. The Warrigal Creek massacre is one of the largest known massacres in Australian history with between 50-150 people murdered (Gardner 1993: 15; Morgan 1997: 55). The site of the massacre is believed to be at a billabong close to the present station homestead; however many of the bodies were removed to the sand dunes near Jack Smith Lake after the massacre. The Rev. George Cox apparently knew of skeletal remains found in the Red Hill sand dunes close to the lake (Adams 1990: 27).

The Aboriginal Protectorate was formed to protect the Aboriginal people and prevent raids on stock and settlements. The Protectorate’s aim was to begin a process of conciliation between the settlers and Aborigines in the Port Phillip District. George Augustus Robinson was appointed Chief Protector of Aborigines for the Port Phillip Colony in 1838 (Caldere & Goff 1991: 5). George Augustus Robinson arrived in Gippsland in 1844. Accompanying him was Commissioner Charles Tyers, who was in charge of the region’s Native Police. Robinson was based at Lake Tyers and too far east to have immediate influence in the central Gippsland region. The Native Police had much control during this period. Only five Gunai were reported to have joined the Native Police Corp which primarily comprised people from the Bunurong, traditional enemies of the Gunai. The Native Police enacted their own revenge raids and were ineffectual in stopping the continuing European attacks and reprisals (Morgan 1997: 58).

By the 1850’s the local Gunai population was drastically reduced. The attacks of the preceding decades were followed by further losses from European diseases. A squatter, Henry Meyrick describes:

‘The blacks are very quiet here now, poor wretches. No wild beast of the forest was ever hunted down with such unsparing perseverance as they are …They will very shortly be extinct. It is impossible to say how many have been shot, but I am convinced that not less than 450 have been murdered altogether’ (Meyrick 1846 in Morgan 1997: 57).
In 1860, the Central Board for the Protection of Aborigines (CBPA) was established to replace the Protectorate. A Movarian mission near Bundalaguah was initially established. This was followed by the Ramahyuck mission at Lake Wellington and a mission at Lake Tyers founded by the Rev. John Bulmer.

In 1886, the introduction of the Aboriginal Act meant that only people considered as full blooded, or half blooded people over 35 years of age were allowed to remain on the Mission Stations. This led to a decreased labour force on the stations and an increase in fringe dwelling Aboriginal people in the Melbourne region (Presland 2001: 105, 107). The resulting fall in residents on the mission stations forced the closure of Ramahyuck in the late nineteenth century. The remaining people were moved to Lake Tyers. Station residents at Lake Tyers were granted land and formal ownership of the Lake Tyers mission under the Aboriginal Land Act 1970. Gunai people continue to live at Lake Tyers and across the Gippsland area. The GKLWAC were appointed as the Registered Aboriginal Party for Gippsland in May 2008 and they now manage the cultural heritage of the Gippsland Aboriginal community.

There are currently no recorded Aboriginal burial sites located near the activity area. According to Howitt the Kurnai wrapped the body of the deceased in possum skin and bark, in some cases for several years, until the bones remained and then placed the remains in a tree hollow (Howitt 1904: 459). Bulmer suggests that children who died may have been kept by their parents for some months. He also noted that the dead were not always placed in a tree and that ‘if they were in a part of the country where the ground was soft they would bury the dead underground’ (Bulmer 1888 in van Warden 1989: 10). There are no dune features within the activity area; significantly decreasing the potential for the location of burial remains as the softer, sandy soils are known as preferred burial locations across south eastern Australia.

In summary, the salient ethnographic information for this plan is:

- The traditional Aboriginal landowners is the Brataualung clan which is a member of the Gunai/Kurnai language group;
- There are limited primary sources, and none specific to the activity area;
- By 1845 all traditional land in Gippsland was occupied and excluded from Aboriginal people;
- In 1860 a mission (Bundalaguah) was established which housed the remaining Aboriginal people;
- The GKLWAC is unable to provide any traditional information specific to the activity area.

3.3 Resources Available to Aboriginal People

The resources available for Aboriginal subsistence in the past would have been rich. The activity area and surrounding region contain a variety of productive ecological zones such as riverine, mountainous, lacustrine and terrestrial that would have been attractive for
The traditional economy in the Gippsland region would have followed the typical hunter-gatherer lifestyle. Resources would have varied according to season, with camp sites chosen according to resource availability and the purpose and duration of the stay. The greatest abundance and diversity of resources probably would have occurred through the summer months. Some insight into the seasonal sourcing of food is provided by The Rev. John Bulmer, who established the Lake Tyers Mission in the 1860’s.

‘In summer time their days were spent chiefly in fishing … they fished mostly on the coast or at the mouths of the rivers which run into the sea… When they desired a change of food a day would be spent in going back to the bush for wallaby’ (Bulmer in Smyth 1878: 141-143).

According to Bulmer hunting, particularly for koala and kangaroo, was more common in winter. He reported that during the winter people tended to remain in the one place for longer and established more substantial campsites with shelters of thatched grass and sheets of bark. It was also observed that many of the ceremonial and social gatherings took place in the autumn (Bulmer in Smyth 1878: 141-143).

The activity area is located to the west of Corner Inlet and north-west of Wilsons Promontory. The broader region would have provided habitat for a number of land and arboreal mammals. Mammals such as possums, kangaroos, wallabies, koalas, emu and echidna would have been exploited for food, sinew, fur and skin. Howitt commented on the abundance of food resources in the area stating:

‘The grassy forests were stocked with kangaroo and other varieties of herbivorous marsupials; the forest trees harboured opu sums, the native bear and the iguana; the rivers and lakes swarmed with varieties of fish and eels; various plants, bushes and trees afforded edible substances in roots, berries or seeds; and both on land and water, birds were of great variety and number’ (Howitt 1904: 208).

Bulmer observed various hunting techniques including men with spears encircling their prey and the use of fire to move animals enabling them to be speared (Bulmer in Vanderwal 1994: 50).

Sea birds and their nests would also have been common along the coast, particularly in the estuaries around Corner Inlet. Albatross, gannets, terns, cormorants, sea eagles, red oystercatchers, pelicans, black swans and ducks are all found in the area. There are also many islands immediately off the coast that were potential areas of exploitation by pre-Contact Aborigines. The islands support rookeries of mutton birds, fairy penguins, cormorants and silver gulls (Hope & Coutts 1971: 109). Marine animals were another potential source of food. In 1789 Bass reported large seal colonies on both sides of Wilsons Promontory and the close islands. Although seals are not mentioned in the early ethnographic accounts, it is probable that seals were an important food resource. Sealing was one of the earliest industries to impact south-eastern Australia and it is likely that the dramatic impact of European sealing on the seal colonies forced the Aborigines to focus on other food sources (Hope & Coutts 1971:109).

Many species were introduced into Wilsons Promontory when it became a National Park in 1908, however Kershaw stated ‘there were only six species of large native mammals
present at the inception of the park’ (Kershaw 1928 in Hope & Coutts 1971: 105). The six included the black tailed wallaby, the koala, the echidna, the long nosed bandicoot, the ring tailed possum and the dingo. Smaller mammals such as native mice would also have been present and many other species are likely to have been present, but were simply not recorded by early observers (Hope & Coutts 1971: 105).

Prior to the impact of European settlement the area would have been rich in resources. Fison and Howitt noted the abundance of food resources in Gippsland with the forests and the grassy plains supporting marsupial species such as Kangaroo, and the woodland and trees being home to possums and koala and the lakes and rivers providing abundant fish and eel (1904: 208). Golden Creek within the activity area, and the adjacent waterways associated with Corner Inlet and Tarwin River would have provided sources of fresh water fish and eel and the coastal flats would have been rich in estuarine species. The Rev. John Bulmer also commented on the importance of fish to the Gunai people. Many species of fish were available, in particular parrot fish, leather jacket, flathead, mullet, barracuda and garfish around the shores of Wilsons Promontory and flounder are common within the more protected waters of Corner Inlet (Hope & Coutts 1971: 110). In addition, shellfish would have been common in the rock platforms, and crayfish and crab along the coastline. Bulmer observed the use of bone hooks, netting and spears for fishing, with bark used for floats and stones for sinkers (Bulmer in Vanderwal 1994: 49).

Haydon describes the night as one of the favoured fishing times when ‘canoes, having a fire placed in them on mud or stones may be observed creeping along the shores in great numbers’ (Haydon 1846: 44). Fishing was done by men and women; however men fished with a spear while the women would fish with a hook and line, sometimes in large numbers in canoes (Smyth 1878: 143; Howitt 1904: 761). Plants, such as reeds and rushes, found along creeks would have provided both food and fibre. It is possible that stone or fibre traps for fish and eels were constructed and placed along creeks in the area.

There are 120 edible species recorded at Wilsons Promontory, however it is not known how many of these were actually consumed by the local Aborigines. The roots (rhizomes or tubers) of the Cumbungi (Typha orientalis), Water ribbon (Triglochin procerum) and Common Reed (Phragmites australis) were harvested and cooked in earth ovens (Gott & Conran 1991: 8-9). In the case of the Cumbungi, after being cooked, the centre part of the rhizome was knotted then chewed to extract starch and the remaining fibre was used for string (Gott & Conran 1991: 8). The freshwater inter dune swamps at Wilsons Promontory were identified as a particularly rich resource zone for Triglochin procer, Eleocharis sphacelata and Typha muelleri all species possessing starch-filled tubers that area easy to collect and have a high food yield (Hope & Coutts 1971: 105). The coastal dunes also support berry producing plants and inland scrubland would have included the grass tree (Xanthorrhoea), which provides an edible pith that is procured (Hope & Coutts 1971: 105).

Plants such as murnong, bracken and tree ferns provided staple foods for Aboriginal people, while medicines could be made from species such as Black Wattle (Acacia mearnsii) and wood or bark from Silver Wattle (Acacia dealbata) could be used to manufacture implements. The grasses and water reeds, paperbark trees and Eucalypts all provided raw material for baskets and bark and wooden implements. The bark from stringy bark (yangoro) and mountain ash (yowork) was selected for the manufacture of bark canoes. Canoes were primarily used for fishing; but were also used to cross waterways to collect eggs from bird’s nests (Bulmer in Vanderwal 1994: 57).
the manufacture of implements and access to food and medicinal resources, the bark from these trees would also have been removed for other ceremonial and social non-utilitarian purposes.

Some stone resources used by Aboriginal people in the past would have been available in locations near and within the present activity area. Silcrete and quartz were favoured stone materials for the manufacture of stone implements. These materials would have been readily available from nearby sources. McConnell et al (2002) identify the geological resources and their likely sources, other than river pebbles, used traditionally in the Gippsland region. Silcrete is located within tertiary Volcanics and the margins of these and older underlying quartz sediments, and tertiary sediments, while quartz, cherts and quartzites and located within Devonian and later conglomerates (McConnell et al. 2002: 28-29). Quartz and quartzite river pebbles were also readily available from rivers and creeks either within or near the activity area. Quartz is found within the activity area, close to Golden Creek.

Murray Black, known for his extensive collection of human skeletal remains and stone artefacts predominantly from the Darling River region in NSW, also made some notes on the Aborigines of the Tarwin River. Massola has reproduced some of these in his 'Notes on the Aborigines of the Wonthaggi District' (1974). Black stated that

‘The Tarwin Aborigines were the tomahawk makers for surrounding tribes and were all friendly through periodic barter. They secured a red flinty stone from the Mornington Peninsula ... and would exchange axe heads and flint implements which were made at Tarwin. The principle diorite quarries were about a mile north-west of Inverloch, Rutle’s Quarry and near Pound Creek and McCaughan’s Hill. The flint was secured along the ocean beach, washed up attached to the roots of kelp and seaweed’ (Black in Massola 1974: 47)

In summary, the strategic resources of the activity area indicate that:

- The economy was coastal-based;
- Hunting land-based animals was more common in winter;
- Social gatherings occurred in autumn;
- Golden Creek and the un-named creek could provided fresh water and riverine resources.

3.4 Victorian Aboriginal Heritage Register

3.4.1 Previously Recorded Aboriginal Sites

As a result of searching the site registry at AAV there are no previously recorded Aboriginal heritage sites within the activity area and the activity area has not been subject to ground surface survey for Aboriginal archaeological sites. There are no sites recorded within at least 5 kilometres of the activity area. The closest sites recorded to the current activity area are clustered along the coast to the south and at Yanakie and Wilsons Promontory to the south-east.
Any site distribution analysis must take into account the scale, aims and nature of previous archaeological surveys that recorded sites. Also of importance is the level of ground surface visibility that was available at the time the survey was conducted, as well as the amount of previous survey coverage of the region. For these reasons the site distribution patterns presented in this study should be considered as a tentative distribution model, rather than an established pattern. As a greater proportion of a particular landform is investigated, site distribution patterns and artefact analysis can be considered more reliable.

Archaeological evidence from middens on the Yanakie Isthmus indicates that the area around Wilsons Promontory has been occupied for at least 6,500 years. Coutts obtained a basal date of approximately 6,500 BP with progressively younger dates in higher horizons indicating potentially continuous occupation (Coutts 1970). These sites are located in a coastal landform and are not comparable to the landform in which the activity area is located – however they remain the closest sites that have been formally dated.

In summary:

- There are no previously recorded archaeological or historic Aboriginal sites/places within the activity area;
- The closest recorded archaeological sites are located within coastal landforms to the south and west of the activity area;
- Dates of site formation are predominantly based on technological attributes, which place all sites within the last 7,000 years.
- C14 evidence dates coastal sites to 6,500 BP

3.4.2 Previous Aboriginal Cultural Heritage Investigations

As with most parts of Australia, the activity area would have been well known, if not utilized by Aboriginal people for at least the last 30,000 years. In Gippsland, the excavation of Clogg’s Cave near Buchan in 1971 revealed human occupation deposits dating to the ice age. The earliest date from Clogg’s Cave was 17,120 ± 840 BP (Flood 1980: 254-275; 1983: 25-28, 252). From the archaeological evidence, Flood (et al 1987 in Lourandos 1997: 237) surmised that the human occupation of the sub-alpine region of the Southern Uplands might only date to the last 20,000 years. Lourandos (1997: 237) believes that a general pattern of intensification of human occupation of this region may have occurred in Gippsland hills over the last 3,000 years.

In accordance with Regulation 57 (1) (b) research into the Aboriginal cultural heritage of the geographic region of which the activity area forms a part has been assessed (AHR 2007: 31). There have been no previous archaeological investigations of the activity area or in Foster. There have however been several small scale archaeological surveys in the broader region surrounding the activity area. The results of regional and other relevant small scale studies in the Gippsland area are summarised below. These assist in defining a site prediction model specific to the activity area.

Several studies have been undertaken at Wilsons Promontory to the southwest of the
activity area. Although located within the coastal landform the results of these investigations provide information on the land use and occupation of the broader region within which the activity area is located.

Hope and Coutts (1971) present the results of their investigations into pollen cores and midden sites at Wilsons Promontory, together with a discussion of the present food resources to generate a model of potential food resources during the prehistoric period. An analysis of the flora and fauna available at Wilsons Promontory lead to the conclusion that the area would have provided people with a reliable and adequate food supply from the mid Holocene to the present. The authors identify two assemblages distinguished by differences in the stone tool assemblage and species of shellfish present: Yanakie A is identified as the older and is characterised by finely worked backed blade tools, predominantly manufactured of quartzite. Two rock platform species dominate the midden assemblage at Yanakie A: Subrinella undulata and Cellana tramoserica. Yanakie B is characterised by 'simple tools made mainly from quartz or flint' (1971:111). The dominant shellfish species is Plebidonax deltoids, which is a sandy beach species. A date of 6,500 B.P was obtained for the lowest deposits with progressively younger dates in upper horizons indicating potentially continuous occupation. The timing of the change is uncertain; however the authors suggest 1,200BP as the date by which the shellfish content in the middens had changed to predominantly sandy shore species. The evidence from pollen cores indicates a relatively stable environment for the past 6,500 years with the same range of habitats available to the producers of both the Yanakie A and B assemblages. It is possible that any environmental changes were on too fine a scale to be recognised in the pollen record.

Van Waarden and Ranson conducted extensive research into the Environment, History and Ethnohistory of Wilsons Promontory for the Wilsons Promontory Archaeological Project (1989). The geology, geomorphology, soils, vegetation and fauna are presented in detail providing a comprehensive analysis of the environmental background for Aboriginal occupation of the Wilsons Promontory area. In addition the history and ethnohistory provide information salient to an understanding on the contact and post Contact periods in South Gippsland.

Ellender (2002) presented a re-appraisal of the ethnographies for South Gippsland in an investigation of the ownership of the land at Wilsons Promontory and land to its north between Tarwin River and Corner Inlet. Ellender argues for traditional mechanisms of land succession where a lineage is dying out as an explanation for the change of ownership from Yowenjerre of the Bunurong to Brataulung of the Gunai Kurnai. This explanation stands as an alternative to the explanation of conquest often cited for this area.

Small Scale Investigations:

The results of relevant small-scale studies undertaken in the broader area are summarised below:

In 1992 Webb undertook a desktop investigation of a series of proposed locations for the Victorian landfall site for an Optical Fibre Cable between Hobart and Melbourne. The proposed sites were located between Flinders on the Mornington Peninsula and Tongue Point at Wilsons Promontory. The closest site to the current activity area was at Waratah Bay located just over10 kilometres to the south-west. The Waratah Bay site was assessed
as being of moderate archaeological significance for Aboriginal sites due to the location of midden and artefact sites located in the area (Webb 1992: 15). The landfall site at Darby River, immediately north of Tongue Point at Wilsons Promontory is located approximately 25-30km to the south-east of the current activity area. The area has been the focus of archaeological research in the past and a high number of sites area located within the proposed landfall area. It was recommended that this site not be chosen as a landfall site due to the high number of previously recorded sites and the high potential for additional Aboriginal archaeological materials to be located.

Following Webb’s report Waratah Bay was selected as the landfall site for optical fibre cable. Clark (1992) conducted a desktop investigation of the proposed cable route between Waratah Bay and Leongatha, via Tarwin Lower. The proposed route followed existing roads with the exception of the first kilometre extending inland from the sea. Clark determined that there were no recorded Aboriginal sites along the proposed route, however he assessed the coastal dunes inland from the landfall site as potentially sensitive for the location of Aboriginal archaeological sites.

Clark (1993) conducted a desktop assessment of the proposed Telecom optical fibre cable route between Foster and Foster North to the north-east of the current activity area. No Aboriginal archaeological sites had been previously recorded within the study area; however Clark identified an area of potential sensitivity between Stockyard Creek and the South Gippsland Highway.

A desktop assessment was also conducted of the proposed Telecom optical fibre cable route from Foster to Boolarong and Toora to Woorarra by Clark (1994). No Aboriginal archaeological sites had previously been recorded along the proposed routes and they had not been subject to prior survey. Two areas of potential sensitivity were identified close to waterways including Deep Creek and the Agnes River.

McNiven (1995) conducted an archaeological survey of Nooramunga Marine and Coastal Park, situated along the coast between Port Welshpool and McLoughlin’s Beach located to the east of the current activity area. The study area included a series of islands and sandy banks such as Snake Island, Sunday Island and St Margaret Island. Ten midden sites and 15 isolated artefact sites were identified during the field survey. The majority were recorded at Rankings’ Hill. Most sites were located on the mainland with only one isolated artefact and two midden sites located on the islands.

Luebbers (1997) carried out archaeological survey along the proposed optical fibre cable on Millar Road Yanakie, to the south-east of the current activity area. The route was positioned along existing road reserve or within private property adjacent to the road reserve. No Aboriginal archaeological sites were identified during this field survey.

The study by Edmonds, Long & Schell (1999) was specifically concerned with assessing the development associated with coastal grant applications and the impact they may have on Aboriginal archaeological sites. One of the grant applications assessed by this team was located at Fisherman’s Way, Port Franklin. Although this small area was surveyed, no Aboriginal archaeological sites were located, and it was considered highly unlikely that any undetected sites would be destroyed by the development of the area.

A desktop assessment by Murphy (2000a) of a proposed wind farm site at Silcock’s Hill
Toora formulated a site prediction model for the area based on previously recorded sites and ethnographic information. No Aboriginal archaeological sites were previously recorded within the study area; however field survey was recommended due to the potential for low density artefact scatter sites. Murphy’s site prediction model suggested:

- a very low probability that any significant Aboriginal archaeological features will exist within the present study area due to previous land-use history;
- low probability that as yet unrecorded Aboriginal sites will exist within the study area;
- potential sites are limited to a small number of stone artefacts that are most likely made from silcrete and or quartz;
- apart from stone artefacts, there is no possibility for any other site type to exist within the study area due to the destructive nature of past land use activities;
- any Aboriginal archaeological site that may be located within the study area will be considered of moderate significance at least, due to the paucity of previously recorded sites in the region;
- that an inspection of the study area is warranted, with particular attention made to areas that will be disturbed via earthworks such as the turbine sites and access road routes. This closer inspection of the study area will enable a more comprehensive cultural heritage assessment.

Following the desktop study Murphy (2000b) conducted a field survey of the proposed wind farm site at Silcock’s Hill, Toora. No Aboriginal archaeological sites were identified or recorded during the field inspection.

Clark and Thompson (2000) surveyed a 1.4 kilometre section of the South Gippsland Highway at Grassy Spur, ahead of a proposed road realignment and located to the north of the current activity area. No Aboriginal archaeological sites were identified; however three areas of potential sensitivity for Aboriginal archaeological sites were identified close to Stony Creek.

Following Clark and Thompson, Lane and Clark (2001) carried out Stage 2 of the survey along the South Gippsland Highway realignment. No Aboriginal archaeological sites were identified; however areas close to Stony Creek were again identified as potentially sensitive for the location of Aboriginal archaeological sites.

An archaeological desktop investigation of six proposed wind farm sites in South Gippsland was conducted by Tulloch (2003). The proposed site at Mount Hoddle is located immediately north-west of the current activity area. Battery Creek and the unnamed creeks that extend through the activity area were considered sensitive for Aboriginal sites, as were the hills and ridges around the creeks. In addition, an area of remnant native vegetation was also considered potentially sensitive.
3.4.3 Aboriginal Site Prediction Model for the Proposed Activity Area and Implications

There are no previous Aboriginal heritage investigations of Foster; therefore site distribution models generated for the broader region of the South Gippsland hinterland have been adopted. The lack of recorded sites in the local area means that any site that is found will have an inflated significance rating due to local rarity. Based on the Aboriginal cultural heritage background of the area, the following site prediction model has been generated for the activity area:

- There are no previously recorded Aboriginal archaeological sites within the activity area;
- The activity area has not been subject to previous ground surface survey;
- Low density stone artefact scatters are considered the most likely site types to be located in the activity area;
- The dominant raw material types used for the manufacture of stone artefacts within any lithic site is expected to be silcrete, quartz and quartzite and to a lesser extent hornfels, chert, basalt or crystal quartz;
- The stone assemblage of any site located within the activity area will typically contain a low number of artefacts (n<20), the majority of which will be waste flakes. Only a small percentage (1 to 4%) will be formal tool types;
- Golden Creek and the un-named creek and drainage lines are considered to have moderate for Aboriginal archaeological sites;
- The ridges adjacent to the creeks and drainage lines within the activity area have moderate archaeological potential. The undulating hills have low archaeological potential;
- Aboriginal scarred tree sites will not be located within the activity area due to the absence of indigenous trees of sufficient age;
- The overall Aboriginal archaeological potential of the activity area is moderate.

4 STANDARD ASSESSMENT

4.1 Field Survey Methodology, Coverage and Ground Surface Visibility

Laurinda Dugay-Grist conducted a ground surface survey of the activity area on 14th May, 2009. During this time the activity area received detailed inspection. Although a GKLWAC representative had been arranged for the 14th May, they were unable to attend on the day. The aims of the standard assessment were not to identify every stone artefact or other cultural material on the ground surface, but rather to establish presence or absence of high and low cultural values and areas of conspicuous disturbance.
The entire activity area was surveyed using a systematic method in accordance with current best practice. A pedestrian survey comprising 16 transects in a north-south direction, spaced approximately 12 metres apart was conducted. The transects started from the southern boundary of the activity area and progressed northward until the entire area had been inspected. Dense vegetation and undergrowth across the steep western slopes prevented full survey of this section of the activity area. A judgemental survey strategy was then used to focus on areas of most archaeological potential e.g. along the banks of Golden Creek (Burke & Smith 2004:68). Sections of the activity area were covered with thick grass and dense vegetation, and the few areas of good ground surface visibility, such as around the base of trees and beneath fence lines were targeted (Appendix 3 Standard Assessment Photographs 1 to 5). All mature gums within the activity area were inspected for evidence of cultural scarring; but no evidence of scarring was identified. During the survey detailed notes were made and photographs were taken, and assessment made of any areas that may contain archaeological potential. No rock shelters, caves or cave entrances are present within the activity area r. 59(3) (AHR 2007:33).

Archaeological visibility refers to the amount of ground surface that is clearly visible for site inspection. The greater the ground surface visibility, the more effective are surface site surveys. Examples of high surface visibility are recently ploughed paddocks, areas of recent subsurface installation and road works (100% per square metre); and examples of poor visibility are areas of heavy vegetation cover (0-10% per square metre). Unfortunately, it is often the case that highly visible archaeological sites are also often highly disturbed. High ground surface visibility is therefore often related to the amount of disturbance that has occurred. This disturbance may be human made (such as quarrying, vehicle tracks); by stock (overgrazing, tracks), or due to natural processes (erosion by wind or water).

Due to the current land use (grazing) much of the activity area provided a very low to no level of ground surface visibility. The ground cover prevented effective ground surface inspection in most areas except those where erosion close to drainage lines and dams, beneath trees and beneath fence lines and in areas where cattle had disturbed the surface provided improved visibility. In addition, dense vegetation on the steep western slopes and within a fenced block to the north of the existing house prevented any ground surface visibility within these areas (Appendix 3 Standard Assessment Photographs 1 to 5).

Overall less than 5% of the activity area provided good ground surface visibility for the detection of archaeological sites which has constrained the effectiveness of the survey and its findings. Low levels of ground surface visibility do not limit the effectiveness for detection of scarred tree sites or other obtrusive site types.

For the purposes of this investigation the activity area was divided into three survey units based on landform and vegetation cover.

- Survey Unit 1 comprised undulating slopes and well drained pasture land;
- Survey Unit 2 comprised Golden Creek, the un-named creek and adjacent floodplain and areas subject to inundation;
- Survey Unit 3 comprises the steep western slopes that are densely vegetated (Map 7).
Brief descriptions of the survey units and the ground surface visibility are presented in the following table.

Table 1 Summary Description of Survey Units

<table>
<thead>
<tr>
<th>Survey Unit</th>
<th>Description</th>
<th>Ground Surface Visibility</th>
<th>Effective Survey Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undulating slopes and well drained pasture land. Approximately 60% of the activity area</td>
<td>0-10% per m² Very Poor</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td>This Survey Unit comprises the majority of the activity area and is predominantly made up of undulating slopes with several terraces and ridges adjacent to Golden Creek. Ground surface visibility was very poor to none due to thick pasture. Previous disturbance includes clearing, grazing and repeated ploughing and dam construction. Low numbers of previously disturbed stone artefacts are likely to exist throughout the Activity Area, and may be concentrated on the elevated terraces and ridges adjacent to the creeks. No heritage material identified. The terraces and ridgelines adjacent to the creeks are likely to have been desirable for pre-Contact Aboriginal campsites.</td>
<td><5%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The creek banks. Approximately 10% of the activity area</td>
<td>0-10% per m² Very Poor</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td>This Survey Unit comprises the creeks and creek banks within the activity area. The creeks are quite deeply incised into the landscape. Creek banks would have been desirable for pre-Contact Aboriginal campsites; however flooding episodes may have impacted the presence and integrity of stone artefact scatter sites. Previous disturbance includes clearing, grazing, and repeated ploughing and dam construction. Lower numbers of previously disturbed stone artefact sites are likely to exist within this survey unit. Also potential for subsurface stone artefact deposits along creek banks. No heritage material identified.</td>
<td><5%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The steep and densely vegetated western slopes within the activity area. Approximately 30% of the activity area</td>
<td>0-5% per m² Very Poor</td>
<td><2%</td>
</tr>
<tr>
<td></td>
<td>This survey Unit comprises the steep western slopes within the activity area that are densely vegetated with native re-growth, undergrowth, introduced tree species and some weeds. Previous disturbance includes clearing. The slopes are unlikely to have been favoured by pre-Contact Aboriginal people for camping areas. No heritage material identified, but survey severely impacted by dense nature of vegetation.</td>
<td><2%</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Standard Assessment: Survey Results

During the survey of the activity area no Aboriginal archaeological sites were located or recorded. The lack of ground surface visibility across the activity area was considered a constraint to the effectiveness of the ground surface survey. Therefore, due to the presence of culturally sensitive landforms, a complex assessment was considered necessary (r. 60 (1)(b)).

4.2.1 Aboriginal Cultural Heritage - Discussion

The lack of cultural material identified during the standard assessment is considered to reflect the lack of ground surface visibility. The historic land use indicates that the upper deposits (A horizon) are disturbed through prior agricultural activities including clearing and cattle grazing. In addition, localised disturbance to the sub-surface landscape has occurred through the construction of several dams across all survey units, but particularly along the drainage lines in Survey Unit 1.

The creek banks are excluded from direct impact by the proposed activity, however the Aboriginal Heritage Act 2006 requires a comprehensive assessment of the activity area to be conducted as land within 200m of the waterway will be affected by the development/subdivision. The ridges and terraces adjacent to Golden Creek in the south-western section of the activity area (Survey Unit 1) are considered to be sensitive for Aboriginal archaeological sites. In addition, land adjacent to the un-named waterway in the eastern section of the activity area (Survey Unit 2), is also assessed as potentially sensitive for Aboriginal archaeological sites. The steep slopes along the western section of the activity area are considered to present a low level of sensitivity for the location of Aboriginal archaeological sites. The steepness of the slope means that these areas are unlikely to have been favoured as camping areas by pre-Contact Aborigines.

Based on the results of the standard assessment a complex assessment (sub-surface testing) is required to assess the stratigraphy, disturbance and Aboriginal cultural heritage potential of the areas of high and lower sensitivity within the activity area. Different methodological approaches would be employed reflecting the different levels of sensitivity within the activity area.
5 COMPLEX ASSESSMENT: SUBSURFACE TESTING

5.1 Introduction

Sub-surface testing within the activity area was conducted from 27th to the 31st of July 2009. Sub-surface testing was conducted by Laurinda Dugay-Grist (Project Archaeologist), Justin Yost (Supervising Archaeologist), and Robert O’Bryan and Amanda Rose (Assistant Archaeologists). The GKLWAC were notified of all field work requirements and Shannon Hood represented the GKLWAC during the complex assessment. During the field work, the results and implications were discussed with the representatives of the GKLWAC. The GKLWAC representatives were consulted regarding specific traditional knowledge of the activity area. The GKLWAC representatives present did not indicate that the group had specific traditional knowledge of the activity area (in accordance with the definition of cultural significance AHA 2006).

The stratigraphy of the test pits, shovel pits and transects are detailed within Appendix 5 Tables 2 and 3. A total of one low density surface artefact scatter site (VAHR 8120-0026) was identified and recorded within the activity area. During the sub-surface testing, site plans and maps were inspected, photographs of the activity area were taken, and detailed notes were made. Test pit, shovel pit and transect locations were marked on plans provided and their locations recorded with a hand held GPS unit (Appendix 4 Complex Assessment Photographs 6 to 21, Appendix 5 Tables 2 and 3, Figures 1 to 5).

5.2 Subsurface Testing Methodology

The principle objectives of the sub-surface testing program were to:

- Gain an understanding of the stratigraphy of the activity area;
- Determine whether soils to be impacted by the activity are culturally sensitive;
- Identify any undisturbed sub-surface deposits;
- Identify whether Aboriginal cultural materials are present;
- Investigate a representative sample of sub-surface sediments;
- Characterise the content, extent, nature and significance of any cultural deposits; and
- Assess the scientific significance of all heritage identified.

The initial phase of sub-surface testing comprised the controlled hand excavation of five 1 x 1m test pits across Survey Units 1 and 2 (Map 8). The 1 x 1m test pits were excavated using standard hand held archaeological equipment to determine stratigraphy and the presence and potential for the location of Aboriginal cultural heritage. Hand excavated deposits were initially excavated in arbitrary 2 to 5cm spits. As clear stratigraphic units became apparent, excavation continued according to the stratigraphic unit. Excavation continued to sterile deposit which was generally encountered at a maximum depth of
approximately 1m. All soil excavated was sieved through 2mm and 5mm mesh sieves. A stratigraphic section was drawn for each test pit. No Aboriginal archaeological materials were located during the excavation of the 1 x 1m test pits within the activity area. All test pits excavated were backfilled on completion with turf re-instated.

Once the stratigraphic composition of the different landforms had been identified through the excavation of the 1 x 1m test pits a series of controlled excavated shovel probes were excavated in order to increase the sample of the activity area tested. This approach was used as a relatively efficient and less obtrusive method of testing a wider area. A total of twelve 40 x 40cm shovel probes were manually excavated within Survey Units 1 and 2. As with test pits all excavated deposits were sieved through 2mm and 5mm sieves.

The excavation program continued until a representative sample of Survey Unit 1 and Survey Unit 2 had been adequately tested for the presence and potential of Aboriginal cultural heritage and the extent and nature of any identified sub-surface stone artefact scatter sites was determined. Survey Unit 3 was not subject to sub-surface testing as this area has been zoned under restricted development due to the steepness of the slope and density of the vegetation (Map 8). Survey Unit 3 was also assessed as unlikely to contain Aboriginal cultural material.

5.3 Obstacles Encountered During Complex Assessment

There were no obstacles encountered during the sub-surface testing investigation.

5.4 Complex Assessment Results

5.4.1 Introduction

A total of five 1 x 1m test pits and twelve 40 x 40cm shovel probes were excavated within the activity area. Sub-surface testing focused on testing Survey Unit 1 and Survey Unit 2. Survey Unit 3 was not subject to testing as this is a building restricted zone due to steepness of the slope and dense vegetation; as well as being considered unlikely to possess Aboriginal cultural material.

One low density sub-surface stone artefact scatter was identified in Survey Unit 2 to the west of the un-named creek. No Aboriginal archaeological sites were identified in Survey Unit 1 (Map 7).

General sub-surface disturbance across the activity area due to ploughing and grazing was noted; but was confined to the upper 30cm (A horizon). Other localised impacts to the sub-surface integrity of the activity area include the construction of dams along drainage lines in Survey Unit 2 and adjacent to Golden Creek in Survey Unit 1.

The detailed discussion of the stratigraphic composition of sub-surface soil deposits is discussed below (Section 5.6).

One silcrete flake (Harmons Road 1 VAHR 8120-0226) was recorded in Shovel Probe 3 in the topsoil (A horizon) to the west of the un-named creek (Map 8). The nature and extent of the site was determined via the excavation of additional shovel probes to the north, south and west of the original find location. No additional excavation was conducted to the
east of the find location as this is zoned as green space adjacent to the creek and will not be impacted by the activity. The site is determined to be comprised of one artefact that was probably moved to its find location through fluvial action.

The results confirmed that the western side of the un-named creek within Survey Unit 2 comprised floodplain and had been subject to inundation in the past. This section of the activity area is considered to be of low to moderate sensitivity for the location of Aboriginal cultural heritage due to its proximity to the un-named creek.

Golden Creek is deeply incised into the south-western corner of the activity area. Sub-surface testing within potentially sensitive landscape, including ridgelines and terraces adjacent to Golden Creek did not identify any Aboriginal archaeological materials.
5.5 Site Details

The complex assessment resulted in the recording of one Aboriginal cultural heritage site. VAHR 8120-0226 (Harmons Road 1) is a low density sub-surface stone artefact scatter site identified during the excavation of a shovel probe to the west of the un-named creek.

VAHR 8120-0226 (Harmons Road 1)

Site Registry: Aboriginal Affairs Victoria
AMG Co-ordinates: E 425686 N 5714173
Site Type: Sub-surface stone artefact scatter
Landform Unit: Floodplain
Site Location: LP 142286. Located in floodplain to the west of the creek in the north-east section of the activity area (Map 9).
Site Contents: 1 silcrete flake (Backed Blade)
Site Size (m): 40 x 40cm
Site Context: Artefact located in Unit 2 between 25 to 30cm in silty sand. The stone artefact is considered to be located within natural soil horizons.
Scientific Significance: Very Low
Archaeological Potential: Low

Plate 1
VAHR 8120-0226
Site Contents

Plate 2
VAHR 8120-0226
Site Location. SP 03: @ 25-30cm depth.
Map 9 Location of Place VAHR 8120-0226

Tardis Enterprises Pty Ltd, archaeologists & heritage advisors
5.6 Discussion of Stratigraphy, Nature and Extent of Site

5.6.1 Survey Unit 1

Survey Unit 1 comprises the majority of the activity area and is predominantly made up of undulating slopes with several terraces and ridges adjacent to Golden Creek. Previous disturbance includes vegetation clearing, grazing and dam construction. The terraces and ridgelines adjacent to the creeks are likely to have been suitable for pre-Contact Aboriginal campsites.

Four test pits were excavated within Survey Unit 1. (Figures 1 and 3 to 5). The stratigraphy varied slightly across the survey unit, but primarily comprised upper silty clay deposits that extended down to clay at depths varying between 40-60cm. Naturally occurring quartz pebbles were identified in all test pits and fine flecks of charcoal were also observed in upper deposits. No Aboriginal archaeological deposits were identified in any of the test pits excavated in Survey Unit 1 (Map 8).

On the lower slope (Test Pit 1) Upper deposits comprised clayey silt and quickly changed to a predominantly clayey deposit and to a clay base at 40cm. Small quartz pebbles were identified throughout the deposit and fine, charcoal flecks (naturally occurring) were recorded in upper deposits (Figure 1).

A very shallow silty clay deposit that extended to clay at 40cm was recorded in Test Pit 04, located approximately mid-slope in Survey Unit 1. Moderately sized quartz pebbles were recorded and occasional, fine charcoal flecks (Figure 4).

Test Pits 03 and 05 were located on terraces to the north-east of Golden Creek. Although deposits extended slightly deeper (between 50 to 60cm) they were consistent with deposits excavated in the other test pits. Test Pit 03 comprised upper units of silty clay that extended down to a clay base at 60cm. Quartz pebbles that became larger with depth, were identified throughout the deposit, with fine charcoal flecks recorded in upper units (Figure 3). In Test Pit 05 sandy silts extended down to a compact quartz gravel and silty sand at between 20-30cm. Clay was identified from 30cm and a clay base at 50cm. Water seepage was noted at a basal depth of 50cm. Test Pit 05 was located on the side of a terrace closest to Golden Creek (Figure 5).

Six shovel probes were also excavated in Survey Unit 1 (Map 8). The results were consistent with the stratigraphic sections excavated in the Test Pits (Table 3). No Aboriginal archaeological deposits were identified in any of the shovel probes excavated in Survey Unit 1 (Map 9).

5.6.2 Survey Unit 2

Test Pit 02 was excavated in Survey Unit 2 to the west of the un-named creek. The stratigraphy comprised dark brown clayey silt that extended down approximately 22cm to a heavily cemented silty sand. Clay was identified from 36cm. A sterile clay base was identified at 50cm. No Aboriginal archaeological materials or deposits were identified during the excavation of Test Pit 03 (Figure 3). Six shovel probes were excavated in Survey Unit 2. The stratigraphic composition of the shovel probes was consistent with that described in Test Pit 03. Heavy silt deposits were noted confirming the landform as
floodplain that is likely to have been inundated during flooding episodes from the un-
named creek. A single silcrete flake (VAHR 8120-0226) was identified during the
excavation of Shovel Probe 03. The artefact was located in firm, compacted, dark grey silty
sand. Additional shovel probes were excavated to the north, south and west of the find
location in order to determine the nature and extent of the site. No additional Aboriginal
archaeological materials were identified (Table 3). VAHR 8120-0226 is interpreted as a
very low density sub-surface scatter of very low significance. The artefact is classified as a
microlith and is a backed blade. A microlith is a replaceable part of a composite tool and a
backed blade is produced by retouching along the back of the bladelet. This type of
technology is referred to as the Australian Small Tool Tradition (ASTT) and is dated to the
mid Holocene (Holdaway & Stern 2004:17).

The artefact is not considered to be *insitu* and it is probable that the artefact was moved to
its present location during a prior flooding episode. The artefact is considered to be
located within environmental deposits that have accumulated naturally over time
(Appendix 5 Photographs 22 and 23).

6 ASSESSMENT OF SCIENTIFIC AND CULTURAL SIGNIFICANCE

6.1 Aboriginal Cultural Significance

Following is a summary of the assessment of significance. Details regarding the criteria
used to assess cultural and scientific significance are presented in Appendix 6.

Table 2 Aesthetic, Historic & Social Significance Assessment

<table>
<thead>
<tr>
<th>Site 8020-0226</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract quality</td>
<td>No</td>
</tr>
<tr>
<td>Evocative response</td>
<td>No</td>
</tr>
<tr>
<td>Meaning</td>
<td>No</td>
</tr>
<tr>
<td>Landscape integrity</td>
<td>No</td>
</tr>
<tr>
<td>Landmark quality</td>
<td>No</td>
</tr>
<tr>
<td>Long-term & continuous occupation</td>
<td>No</td>
</tr>
<tr>
<td>Association with event</td>
<td>No</td>
</tr>
<tr>
<td>Existing community landmark/signature</td>
<td>No</td>
</tr>
<tr>
<td>Definitive symbolic qualities</td>
<td>No</td>
</tr>
<tr>
<td>Spiritual or traditional connection between past & present</td>
<td>No</td>
</tr>
<tr>
<td>Important collective meaning</td>
<td>No</td>
</tr>
<tr>
<td>Representative of attitudes, beliefs or behaviours</td>
<td>Yes</td>
</tr>
<tr>
<td>Community function</td>
<td>No</td>
</tr>
<tr>
<td>Long-term use or association</td>
<td>No</td>
</tr>
</tbody>
</table>
6.2 Discussion – Cultural Significance

Both prehistoric and historic Aboriginal sites and places will, generally, have specific significance to the Aboriginal community who possess custodianship, and more broadly, to Australian Aboriginal people. In general, all archaeological sites, whether disturbed or not are of cultural significance to specific community groups. Such sites are the main source of information about the area’s Aboriginal past, as they provide evidence of occupation and land use.

Furthermore, due to past European land use practices and development, Aboriginal archaeological sites are uncommon features within the region. Therefore, sites known to exist and those yet to be found, are important glimpses of past Aboriginal occupation of the area and are deemed to be of Aboriginal cultural significance.

It is also important to note that archaeological and Aboriginal cultural significance does not necessarily follow the same assessment criteria. Archaeological sites or places that are not of high scientific significance can be of high cultural significance to the local Aboriginal community. It is, of course, up to the local Aboriginal communities to assess the Aboriginal cultural significance of any sites within their area of custodianship.

During the sub-surface testing program, the implications of proposed works on the recorded sites and the potential for the proposed activity area to contain further cultural material was discussed with Shannon Hood and Lloyd Hood (GKLWAC). At the time of report finalisation no formal response regarding specific cultural significance had been provided by the RAP.

6.3 Scientific Significance Assessment

Overall scientific significance ratings for artefact scatter sites are based on a cumulative score. The following table is a summary of the results of the individual site assessment:

<table>
<thead>
<tr>
<th>Site 8121-0226</th>
<th>Query</th>
<th>Answer</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artefact density per m²</td>
<td>0-15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Environmental Deposits</td>
<td>Yes</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>More than one period represented</td>
<td>No</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Occupation deposits, surfaces or features*</td>
<td>No</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stratified occupation deposits, surfaces or features*</td>
<td>No</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Scientific Significance of VAHR 8120-0226

| Scientific Significance | 1 – Very Low |
Discussion

The site VAHR 8120-0226 is assessed as being of very low scientific significance. The site contained one artefact and is situated within natural soil horizons that date to the late Holocene period as does the technology used to manufacture the artefact. There is no clear evidence of occupation deposits, features or horizons such as hearths or knapping events. The artefact is not considered to be insitu and was probably moved to its find location by fluvial action. The artefact has been demonstrated to not be part of a larger or otherwise more significant site, and should be seen as the result of accidental loss or discard by Aboriginal people in the past. The last remaining aspect in appropriate management of this site is to determine whether any salvage excavations can be justified. This aspect is dealt with in the following section.

6.4 Research Questions

What site formation processes have contributed to any observed patterning of Aboriginal cultural heritage?

Post depositional activities. VAHR 8120 -0226 is a single artefact occurrence. It is located within a floodplain landscape and is likely to have been moved into its current position via fluvial action.

What artefact types and features are found in the activity area?

VAHR 8120 -0226 comprised a single silcrete flake. No archaeological features were found in association with the site (e.g. hearths, workshops, etc) confirming that behaviour was not associated with intense Aboriginal occupation such as long-term or even short-term base camps.

What stone raw materials were used and where were they sourced?

The artefact is made from silcrete. Silcrete is favoured due to the high quality of the raw material and its fracturing characteristics. Silcrete is not available as a raw material source within the activity area and no precise information is available on raw material sources in the immediate area. Silcrete outcrops are likely in the broader area and are known in the central Gippsland highlands and foothills to the north.

When and for how long did people occupy the activity area?

The single artefact identified at the activity area is consistent with the ASTT which dates to the Late Holocene. The artefact could date to anytime within the last 5,000 years, but more likely to within the last 200 to 3,000.

Due to size of the assemblage it is not possible to make any interpretations on the nature and duration of occupancy within the activity area.
What activities were conducted in the activity area?

The stone artefact assemblage comprised a single silcrete flake that had been modified into a Backed Blade (see Glossary). A microlith is a replaceable part of a composite tool and a backed blade is produced by retouching along the back of the blade-let.

6.5 Research Potential

The research potential of stone artefact scatter sites can be assessed by the likelihood that further salvage excavations can provide additional data to significantly change the answer to the research questions already answered by the complex assessment (see above Section 6.7).

VAHR 8120-0226 contains a single silcrete flake. The complex assessment demonstrated that there are no occupation deposits or features, stratified or otherwise associated with the site. This demonstrates that the site has little, if any, spatial or temporal integrity. The site has no potential for the recovery of data with high spatial or temporal integrity required to justify salvage excavation.

6.6 Statement of Significance

European assessments of cultural significance (aesthetic, historic or social / spiritual) may not accord with those of the Aboriginal community. It is up to the RAP to decide the Aboriginal significance of any site or place within their custodianship. Although the RAP usually attributes general cultural significance to Aboriginal cultural heritage, the approach adopted here aims to produce an analytical, transparent and specific cultural significance assessment of Aboriginal cultural heritage. The detailed assessment of European cultural and scientific significance of Aboriginal sites identified within the activity area is presented in Appendix 6 while a summary of site significance is presented in Table 6 below. This statement of significance aims to place the Aboriginal cultural heritage of the activity area within a regional context.

The activity area is located across steep and undulating hills. Golden Creek is located in the south-west corner of the activity area and is deeply incised into the surrounding landscape. An un-named creek extends across the eastern section of the activity area. To the west of the un-named creek extends a low lying floodplain (Map 2).

The complex assessment has demonstrated that the activity area is unlikely to contain any deposits of potential Aboriginal archaeological significance. One site was located within floodplain to the west of the un-named creek. VAHR 8120-0226 does not contain intact or stratified occupation deposits, a large diversified sample of artefacts with relatively complete reduction sequences, a wide variety of data classes or raw material, or detailed spatial patterning of artefacts and features. Without these attributes sites are unlikely to answer research questions. The site reflects evidence of day to day foraging activities which result in a background distribution of discarded/loss cultural material. There is no evidence that this site is part of a larger of more significant locale which saw focused pre-contact Aboriginal behaviour.
Table 4 Aboriginal Sites: Cultural and Scientific Significance Summary

<table>
<thead>
<tr>
<th>VAHR No. & Site Name</th>
<th>Specific Cultural Significance</th>
<th>Scientific Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>8120-0226</td>
<td>No</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

7 CULTURAL HERITAGE MANAGEMENT ISSUES & RECOMMENDATIONS

Appropriate cultural heritage management seeks to avoid any harm to cultural heritage sites. Harm to an Aboriginal cultural heritage site may occur when an activity reduces the scientific or cultural significance of a site or an archaeological area. Any activity that exposes or disturbs in any way the fabric or content of a site reduces its heritage value. Sites of higher scientific significance are those that are described as in situ, being the original context in which they were left. Similarly, sites can be impacted if their context is reduced to a point where there are no other related reference features in the local landscape to provide context and therefore broader interpretation of a site. This is referred to as the level of cultural landscape integrity.

A proposed activity must be conducted in a way that avoids harm to an Aboriginal cultural heritage site in accordance with S61 Aboriginal Heritage Act 2006. If it does not appear possible to avoid harm then the activity must be conducted in a manner that minimises harm to Aboriginal cultural heritage.

With the exception of an isolated find in shovel probe 3 no evidence of occupation and exploitation by pre-contact Aboriginal people in the past was recorded within the activity area during the standard assessment or complex assessment. The results are considered to reflect pre-Contact Aboriginal behaviour and it is determined that, with the exception of VAHR 8120-0226, there is low potential to harm to Aboriginal cultural heritage within the activity area. However, a Contingency Plan is presented in order to deal with the discovery of any Aboriginal cultural heritage during the construction activity associated with the development of the activity area (Section 8).

One sub-surface stone artefact was located and recorded in the north-east section of the activity area during the complex assessment. No further Aboriginal archaeological materials or potentially sensitive deposits associated with VAHR 8120-0226 were identified during the complex assessment.

It is proposed to develop the activity area as a low density residential subdivision. The activity area will be divided into 14 residential lots of between one and two hectares in size with two roads entering into the subdivision and extending to the north and south and ending in a court. Each of the fourteen blocks will be accessed via these roads. The existing residence, shed and tank will remain. A reserve of approximately 20 metres will also extend along Golden Creek. The sub-division of the activity area for the purposes of residential development will not impact on the registered site. The Aboriginal place comprised one artefact which was collected during the complex assessment and therefore no harm will occur to archaeological or physical remains.
7.1 Specific Recommendations

Once this CHMP has been approved, the following recommendations become mandatory requirements. Based on the findings of this plan the following recommendations are made:

Recommendation 1: VAHR Site 8120-0226

Sub-surface stone artefact scatter site VAHR 8120-0226 has *very low* scientific and *no* specific cultural significance (Tables 2, 3 4). The extent, nature and significance of the site were determined during the assessment as required under Regulation 60 (*Aboriginal Heritage Regulations 2007*).

The content of the registered site has been collected during the complex assessment and therefore the physical remains of this site will not be impacted by the activity. Sub-surface investigations revealed that the site is an isolated sub-surface find of indeterminate origin. No additional Aboriginal cultural materials or deposits were located during the complex assessment. It is considered highly unlikely that salvage excavations will recover additional stone artefacts that will contribute to the scientific knowledge of the site beyond that already demonstrated during the complex assessment. Based on the incapacity of this site to address current research questions, no archaeological salvage is recommended. No harm avoidance, minimisation or management measures are required prior to the activity commencing.

Recommendation 2: Contingency Plans (Section 8)

Any discovery of Aboriginal cultural heritage outside the expectations of the CHMP is to be dealt with by the Contingency Plans in Section 8. The Sponsor should take particular note of the Contingency Plan for the Discovery of Human Remains.

8 ABORIGINAL CULTURAL HERITAGE MANAGEMENT CONTINGENCIES

8.1 Contingency for the Discovery of Aboriginal Cultural Heritage During any Activity*

It is recommended that Contingency Plans are adopted to manage any Aboriginal heritage discovered during the course of the activity. The sponsor must ensure that the relevant Contingency Plans are followed. To assist in this aim, a checklist has been provided (Appendix 10).

Preamble

The GKLWAC received RAP status on 23.5.2008 and are now responsible for the artefact from site VAHR 8120-0226 (HR 1). The Aboriginal cultural heritage artefact will be provided to the GKLWAC upon approval of this plan.

The following contingency plans refer to the involvement only of the RAP under the *Aboriginal Heritage Act 2006*. If required a Cultural Heritage Advisor should be engaged to help facilitate appropriate outcomes with the RAP.
Contingency for the Discovery and notification of Aboriginal Cultural Heritage During Any Activity *

(i) A person who discovers Aboriginal cultural heritage during the activity will immediately notify the person in charge of the activity who will engage a heritage advisor to attend the find;

(ii) The person in charge of the activity in consultation with the heritage advisor and the GKLWAC must then suspend any relevant works at the location of the discovery and within an appropriate buffer (i.e. 25m) of the relevant site extent;

(iii) The heritage advisor in consultation with a GKLWAC representative and the person in charge of the activity, and if necessary to prevent any further disturbance, the location will be isolated by a fence, safety webbing, or other suitable barrier and works may recommence outside an appropriate buffer or area of exclusion. Activities such as the evaluation of discovered Aboriginal cultural heritage, determining suitable distance to resume works, or an agreed course of action will be undertaken by a heritage advisor in consultation with the GKLWAC;

(iv) The heritage advisor in consultation with a GKLWAC representative and the person in charge of the activity area will evaluate the Aboriginal cultural heritage to determine if it is part of an already known site or should be registered as a new site. Management of sites will vary depending on site type (Isolated or dispersed scatters as opposed to stratified and intact scatters, and discrete shell midden deposits). If the Aboriginal cultural heritage is assessed by the heritage advisor, in consultation with the GKLWAC, as a site with below moderate scientific significance (see Section 7), then after recording the material, no further management is required and works may proceed. After recording the material works may proceed. The heritage advisor must submit relevant documentation to Site Registry, AAV.

If Aboriginal cultural heritage is discovered with moderate and above scientific significance, the heritage advisor, in consultation with the GKLWAC and the Sponsor, should explore all options to avoid impact to the Aboriginal cultural heritage. If impact is unavoidable, then it should be minimised where possible and salvage excavation of the Aboriginal cultural heritage undertaken to mitigate impact. In consultation with the GKLWAC salvage excavation methodology should be carried out in accordance with proper archaeological practice. After recording the material works may proceed. The heritage advisor must complete the appropriate Victorian Aboriginal Heritage Registry forms and submit report to AAV detailing the results of the excavations;

(v) Within a period not exceeding three (3) working days a decision/recommendation will be made by the GKLWAC representative in consultation with the sponsor and the cultural heritage advisor, as to the process to be followed to manage the Aboriginal cultural heritage in a culturally appropriate manner, and how to proceed with the works;

Failure of parties to reach an agreed course of action in this manner will be classed as a Dispute under this agreement.
(vi) Work may recommence within the 25m radius exclusion zone:

- When the appropriate protective measures have been taken;
- Where the relevant Aboriginal cultural heritage records have been updated and/or completed;
- Where all parties agree there is no prudent or feasible course of action; or
- Once any relevant dispute has been resolved.

(vii) Where relevant, the heritage advisor, the sponsor and GKLWAC representative will ensure that the above steps are followed and that legal obligations and requirements are complied with at all times.

(viii) Custody of all Aboriginal cultural heritage:

Any Aboriginal cultural heritage recovered or salvaged from within the activity area remains the property of the GKLWAC. Any such recovery or salvage will be agreed to and overseen by a GKLWAC representative.

In any such instance it will be the responsibility of an experienced heritage advisor to:

- Catalogue the Aboriginal cultural heritage;
- Label and package the Aboriginal cultural heritage with reference to provenance;
- With the GKLWAC, arrange storage of the Aboriginal cultural heritage in a secure location together with copies of the catalogue and assessment documentation.
- Report the discovery to Aboriginal Affairs Victoria by lodging site cards and associated reports.
8.2 Contingency Plan for the Discovery of Skeletal Remains

If any suspected human remains are found during the activity, works must cease. The Victoria Police and the State Coroner’s Office should be notified immediately. If there are reasonable grounds to believe that the remains are Aboriginal, the Department of Sustainability and Environment’s Emergency Coordination Centre must be contacted immediately on 1300 888 544.

This advice has been developed further and is described in the following 5 step contingency plan. Any such discovery at the activity area must follow these steps.

1 Discovery:
 - If suspected human remains are discovered, all activity in the vicinity must **stop** to ensure minimal damage is caused to the remains; and
 - The remains must be left in place, and protected from harm or damage.

2 Notification
 - Once suspected human skeletal remains have been found, the Coroner’s Office and Victoria Police must be notified immediately;
 - If there is reasonable grounds to believe that the remains could be Aboriginal, the DSE Emergency Coordination Centre must be immediately notified on 1300 888 544;
 - All details of the location and nature of the human remains must be provided to the relevant authorities; and
 - If it is confirmed by these authorities that the discovered remains are Aboriginal skeletal remains; the person responsible for the activity must report the existence of the human remains to the Secretary, DPCD, in accordance with s.17 of the Act.

3 Impact Mitigation or Salvage:
 - The Secretary, after taking reasonable steps to consult with any Aboriginal person or body with an interest in the Aboriginal human remains, will determine the appropriate course of action as required by s.18(2)(b) of the Act;
 - An appropriate impact mitigation or salvage strategy as determined by the Secretary must be implemented. This will depend on the circumstances in which the remains were found, the number of burials found and the type of burials, and the outcome of consultation with any Aboriginal person or body.
4 Curation and Further Analysis:

- The treatment of salvaged Aboriginal human remains must be in accordance with the direction of the Secretary.

5 Reburial:

- Any reburial site(s) must be fully documented by an experienced and qualified archaeologist, clearly marked and all details provided to AAV;
- Appropriate management measures must be implemented to ensure that the remains are not disturbed in the future.

8.3 Dispute Resolution

As a RAP is not responsible for evaluating this CHMP, there can be no dispute between the RAP and the Sponsor in relation to what is agreed to in the implementation of the CHMP or the conduct of the activity.

Under Section 116 (2) AHA 2006 the sponsor of a cultural heritage management plan may apply to VCAT for review of a decision of the Secretary under section 65 to refuse to approve the plan.

8.4 Non Compliance with the Cultural Heritage Management Plan

Although no further archaeological investigation has been recommended in this CHMP, it is possible that cultural heritage material may be uncovered during the proposed works. In order to inform the sponsor of their legal responsibilities in regards to cultural heritage management, specific legislative requirements are provided below.

In addition, a checklist referring to matters that must be complied with under the CHMP is included in Appendix 10.

The monetary values of all listed penalties are current at the time writing.

Aboriginal Cultural Heritage

Causing harm to Aboriginal cultural heritage is an offence under the Aboriginal Heritage Act 2006. Under section 81, the Minister may order a cultural heritage audit to be carried out if there is reason to believe that the sponsor has contravened, or is likely to contravene, the recommendations contained in this CHMP.
Part 3 PROTECTION OF ABORIGINAL CULTURAL HERITAGE

Division 1 Protection from Harm

s.27 Harming Aboriginal Cultural Heritage Unlawful

(1) A person is guilty of an offence if:
 a) the person knowingly does an act that harms Aboriginal cultural heritage, and;

 b) at the time the act was committed the person knew that the thing harmed was Aboriginal cultural heritage.

(2) A person who is guilty of an offence under subsection (1) is liable to a penalty not exceeding:

 a) in the case of a natural person, 1800 penalty units or $198,216.00;

 b) in the case of a body corporate, 10,000 penalty units or $1,101,200.00.

(3) A person is guilty of an offence if:

 a) the person knowingly does an act that harms Aboriginal cultural heritage; and

 b) at the time the act was done the person was reckless as to whether the thing harmed was Aboriginal cultural heritage.

(4) A person who is guilty of an offence under subsection (3) is liable to a penalty not exceeding:

 a) in the case of a natural person, 1200 penalty units or $132,144.00;

 b) in the case of a body corporate, 6000 penalty units or $660,720.00.

(5) A person is guilty of an offence if:

 a) the person knowingly does an act that harms Aboriginal cultural heritage; and

 b) at the time the act was done the person was negligent as to whether the thing harmed was Aboriginal cultural heritage.

(6) A person who is guilty of an offence under subsection (5) is liable to a penalty not exceeding:

 a) in the case of a natural person 600 penalty units or $66,072.00;

 b) in the case of a body corporate, 3000 penalty units or $330,360.00.
(7) An offence under this section is an indictable offence.

Note: the provisions of Division 12 Part 1 of the *Crimes Act 1958* (which deal with attempts) apply to indictable offences against this Act.

s. 28 Doing an act likely to harm Aboriginal cultural heritage unlawful

(1) A person is guilty of an offence if:

a) The person knowingly does an act that is likely to harm Aboriginal cultural heritage; and

b) At the time the act was done the person knew that the act was likely to harm Aboriginal cultural heritage.

(2) A person who is guilty of an offence under subsection (1) is liable to a penalty not exceeding:

a) In the case of a natural person, 1200 penalty units or $132 144.00;

b) In the case of a body corporate, 6000 penalty units or $660 720.00.

(3) An offence under this section is an indictable offence.

Note: the provisions of Division 12 Part 1 of the *Crimes Act 1958* (which deal with attempts) apply to indictable offences against this Act.

Division 4 Aboriginal Places and Objects

s. 24 Reporting discovery of Aboriginal places and objects

(1) This section applies if:

a) a person discovers an Aboriginal place or object; and

b) the person knows that the place or object is an Aboriginal place or object.

(2) The person must report the discovery to the Secretary as soon as practicable unless, at the time of making the discovery, the person has reasonable cause to believe that the Register contained a record of the place or object.

Penalty: In the case of a natural person, 60 penalty units or $6 607.20;

In the case of a body corporate, 300 penalty units or $33 036.00.

(3) If a discovery of an Aboriginal place or object is made in the course of works being carried out on any land, the person in charge of the works is deemed for the purposes of this section to be the person who discovered the place or object.
Provision for Review

Review of this plan can be undertaken at any time by project delegates representing the sponsor and the RAP, or an agreed independent reviewer, to ensure that all parties are complying with the terms of the plan.

At the time of preparing this CHMP, a RAP had yet to be appointed for the activity area. Until a RAP has been appointed the Secretary for DPCD will act on behalf of a RAP and is responsible for nominating relevant Aboriginal groups/organisations to be involved in heritage matters within the activity area.

8.5 Changes to Activity

Should any changes be made to the activity in terms of the nature and extent that ground is to be impacted, the sponsor must obtain statutory approval and may be required to submit a new CHMP (Section 52(1) Aboriginal Heritage Act 2006).

8.6 Compliance Checklist

A checklist outlining those matters that must be complied with has been provided as a separate document to facilitate its use (Appendix 10). This checklist must be used by the sponsor to ensure compliance on the discovery of any cultural material.
REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboriginal Affairs Victoria</td>
<td>1997</td>
<td>Guidelines for Conducting and Reporting on Archaeological Sites Survey.</td>
</tr>
<tr>
<td>Clark, I.</td>
<td>1990</td>
<td>Aboriginal Languages and Clans: An Historical Atlas of Western and Central Victoria, 1800-1900. Monash Publications in Geography No. 37</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>Telecom Optical Fibre Cable Route Foster to Foster North. An assessment of potential impact on archaeological sites. Report to Telecom.</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>Telecom Optical Fibre Cable Routes Foster to Boolarong; Toora to Woorarra. An assessment of potential impact on archaeological sites. Report to Telecom.</td>
</tr>
<tr>
<td>Clark, V. & M. Thomson</td>
<td>2000</td>
<td>Telecom Optical Fibre Cable Routes Foster to Boolarong; Toora to Woorarra. An assessment of the potential to impact on archaeological sites. Report to Telecom.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>

Luebbers, R. 1997 Archaeological survey of Telstra OFC Millar’s Road, Yanakie, Victoria. Report to Telstra Corporation Ltd.

Morgan, P. 1997 *The Settling of Gippsland: A Regional History.*

Murphy, A. 2000b Toora Windfarm. An Aboriginal Cultural Heritage Survey. Report to PPK Environment & Infrastructure Pty Ltd.

Robinson, G.A. 1839-1849 Papers including letterbooks. MSS. A 7045-52: correspondence and other papers 1837-65, MS.A 7061;

Robinson, G.A. 1849 Correspondence and other papers 1838-49, MSS.A 7075-8; miscellaneous papers 1839-49, MSS.A 7079-84.

Internet Sites

FIGURES
Figure 1 Stratigraphic Profile Test Pit 1 South Section

Figure 2 Stratigraphic Profile Test Pit 2 West Section

Figure 3 Stratigraphic Profile Test Pit 3 Western Section
Figure 4 Stratigraphic Profile Test Pit 4 Western Section

Figure 5 Stratigraphic Profile Test Pit 5 Northern Section

LEGEND

- Silty Sand
- Clay
- Silty Clay
- Grass
- Sand Silty with Pebbles
- Grass roots
- Charcoal
- Rotting Roots
APPENDICES
APPENDIX 1 – SITE GAZETEER
<table>
<thead>
<tr>
<th>Site Type</th>
<th>VAHR #</th>
<th>Co-ordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low density artefact site</td>
<td>8120-0226</td>
<td>425686 5714173</td>
</tr>
</tbody>
</table>
APPENDIX 2 - CULTURAL HERITAGE MANAGEMENT PLAN NOTIFICATION
18 September 2008

Deputy Director
Aboriginal Affairs Victoria
Department of Victorian Communities
GPO Box 2392
MELBOURNE VIC 3001

Dear Sir/Madam

RE: NOTICE OF INTENT TO PREPARE A CULTURAL HERITAGE MANAGEMENT PLAN - PROPOSED RURAL LIVING SUBDIVISION HARMONS ROAD FOSTER

We refer to the above mentioned matter and enclose for your attention a Notice of Intention to Prepare a Cultural Heritage Management Plan as required.

We advise that Tardis Enterprises P/L have been engaged to undertake the plan and we anticipate they will commence works on the project in the very near future.

In the meantime if you have any enquiries in this matter please contact the undersigned on 5662 2630.

Yours faithfully
BEVERIDGE WILLIAMS & CO PTY LTD

GARY CHISHOLM
Senior Town Planner

Enc: APPLICATION FORM, X2 PLANS, TITLE SEARCH

DOCUMENT1
Notice of Intent to prepare a Cultural Heritage Management Plan for the purposes of the Aboriginal Heritage Act 2006

This form can be used by the Sponsor of a Cultural Heritage Management Plan to complete the notification provisions pursuant to s.54 of the Aboriginal Heritage Act 2006 (the "Act").

SECTION 1 – Sponsor Information

Name of Sponsor: BEVERIDGE WILLIAMS & CO PLT ATT: GARY CHISHOLM
Business Name:
Postal Address: PO BOX 161 LETCHMATHA VIC 3953
Telephone Number: 5662 2430 Fax number: 5662 3578
Mob: 0400 234 257
Email Address: leongatho@bevwill.com.au.

SECTION 2 – Description of proposed activity and location

- Clearly identify the project name (if applicable).
- Clearly identify the proposed activity and its extent in respect to the area for which the plan is to be prepared (attach a copy of a title search and indicate street address where applicable).
- Attach a map (to scale, with a north arrow and indicating the municipal district - if any) that clearly identifies the area and boundaries in respect of which the cultural heritage management plan is to be prepared.

L5871 - GRAHAM GOLDIE RURAL LIVING SUBDIVISION
SEE ATTACHED MAP AND TITLE SEARCH.
PLAN IS MANDATORY.

SECTION 3 – Expected start and finish date for the cultural heritage management plan

Start date: 18 / 9 / 08 Finish date: 18 / 12 / 08
SECTION 4 – Contact details for land owner/manager (where different to sponsor).

Mr Graham Gould
CI- Beveridge Williams & Co Plc
PO Box 161
Leonardtown VIC 3953.

SECTION 5 – List the relevant registered Aboriginal parties (if any)

This section should only be completed where there is a registered Aboriginal party in relation to the Plan

NONE

SECTION 6 – Signature of Sponsor

I certify that to the best of my knowledge and belief that the information supplied is correct and complete.

Signed: [Signature] Date: 18/9/2008

[Sponsor]

SECTION 7 – Checklist

☐ Ensure appropriate attachment/s are completed and attached to this notification (see section 2 of this form).

Please ensure this notice and all attached items are sent to the:

Deputy Director
Aboriginal Affairs Victoria
Department for Victorian Communities
GPO Box 2392
MELBOURNE VIC 3001

Notes:

- Ensure that any relevant registered Aboriginal party/s are also notified. A registered Aboriginal party is allowed up to 14 days to provide a written response to a notification specifying whether or not it intends to evaluate the management plan.

- In addition to notifying the Deputy Director and any relevant registered Aboriginal party/s, a sponsor must also notify any owner and/or occuper of any land within the area to which the management plan relates.
Legalco Online Information System

Information provided through Legalco Management Pty Ltd an approved LP/NSW Information Broker.

Register Search Statement

Copyright State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. The State of Victoria accepts no responsibility for any subsequent release, publication or reproduction of the information.

REGISTER SEARCH STATEMENT
Land Victoria

Security no : 124028576643X Volume 09509 Folio 787
Produced 06/07/2005 09:15 am

LAND DESCRIPTION

Lot 2 on Plan of Subdivision 142286.

PARENT TITLE Volume 09396 Folio 387
Created by instrument LP142286 03/05/1983

REGISTERED PROPRIETOR

Estate Fee Simple

Solo Proprietor

FEDER GRAHAM GOLDI of 34 LARHEAT AV NORTH BALWYN 3104
W0346961 19/05/1999

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 90 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan or imaged folio set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE LP142286 FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

The following information is provided for customer information only.

Street Address: 90 HARMONS ROAD FISH CREEK VIC 3959

STATEMENT END

[Register Search Statement] # 8319011 - 8319011091520 '15871'

SUPPLIED UNDER LICENCE BY ESPREON PROPERTY SERVICES PTY LTD.

Beveridge Williams Leongatha
Account acsv038

Figure 1 Activity Area Location
(VicRoads Ref: 103 C5)

Legend:

Denotes Activity Location

Parish: Wonga Wonga South
LGA: South Gippsland
APPENDIX 3 – AAV ACKNOWLEDGEMENT OF CHMP
29 September 2008

Mr Gary Chisholm
Beveridge Williams & Co Pty Ltd
PO Box 181
LEONGATHA VIC 3953

Dear Mr Chisholm,

NOTICE OF INTENT TO PREPARE A CULTURAL HERITAGE MANAGEMENT PLAN, GRAHAM GOLDIE RURAL LIVING SUBDIVISION, FOSTER.

I am writing to acknowledge your written notice of intention to prepare a management plan, dated 18 September 2008, for Graham Goldie Rural Living Subdivision, Foster.

Your notification has been allocated the AAV Project Number 10572. Please quote this number when making any future enquires to AAV regarding this plan.

There is currently no relevant registered Aboriginal party in relation to the proposed activity area. Therefore, AAV will evaluate the plan when completed.

Please contact Ms Liz Kilpatrick, Acting Coordinator - Heritage Assessments directly on (telephone) 9208 3268 if you have enquiries regarding this advice. For any other enquiries relating to the Aboriginal Heritage Act 2006, please contact the AAV Heritage Policy Team on (free call) 1800 762 003.

Yours sincerely

Ian Hamm
Deputy Director
Aboriginal Affairs Victoria
APPENDIX 4 – PHOTOGRAPHS
STANDARD ASSESSMENT PHOTOGRAPHS 1 to 5

COMPLEX ASSESSMENT PHOTOGRAPHS 6 to 21

VAHR 8120-0226 PHOTOGRAPH 22
Photograph 1
Survey Unit 1 Facing SW

Photograph 2
Survey Unit 1 & Golden Creek. Facing SW

Photograph 3
Survey Unit 2 Facing SE
Photograph 4
Survey Unit 3 Facing west

Photograph 5
Survey Unit 1 to 2 & dam on drainage line. Facing NE.

Photograph 6
Test Pit 01End of Excavation
Photograph 7
Test Pit 02 End of excavation

Photograph 8
Test Pit 03 End of excavation.

Photograph 9
Test Pit 04 End of excavation
Photograph 10
Test Pit 05 - End of excavation.

Photograph 11
Shovel Probe 01 - End of excavation

Photograph 12
Shovel Probe 02 - End of excavation
Photograph 13
Shovel Probe 3 - End of Excavation

Photograph 14
Shovel Probe 04 - End of Excavation

Photograph 15
Shovel Probe 05 - End of Excavation
Photograph 16
Shovel Probe 06 - End of Excavation

Photograph 17
Shovel Probe 07 - End of Excavation

Photograph 18
Shovel Probe 08 - End of Excavation
Photograph 19
Shovel Probe 09 - End of excavation

Photograph 20
Shovel Probe 10 - End of Excavation

Photograph 21
Shovel Probe 11 - End of Excavation
Photograph 22

Shovel Probe 12 - End of Excavation
APPENDIX 5 – EXCAVATION RESULTS

TEST PIT RESULTS

SHOVEL PROBE RESULTS
Table 5 Results of Test Pit Excavations

<table>
<thead>
<tr>
<th>No.</th>
<th>Area</th>
<th>Location (GDA94)</th>
<th>Stratigraphy</th>
<th>Cultural Material</th>
</tr>
</thead>
</table>
| 01 | 1 x 1 m | 425609E 5713903N | **Unit 1: 0 to 15cm** Friable compaction and moderately sticky dark brown clayey silt. Very damp. Frequent fine grass roots. Small (10-15mm), infrequent, natural quartz fragments. Fine charcoal flecks throughout. Diffuse boundary to Unit 2.
 pH 6
 Munsell: 7.5YR 2/1.
Unit 2: 15 to 24cm Firmly compacted and moderately sticky greyish brown silty clay. Small (10-15mm), infrequent, natural quartz fragments. Becoming more clayey with depth. Orange, brown and yellow mottling at 24cm. Clear boundary to Unit 3.
 pH 5.5
 Munsell 10YR 5/2
Unit 3: 24 to 40cm Very strongly compacted and sticky Clay. Decomposing root evident in SW corner of test pit. Small (10-15mm), infrequent, natural quartz fragments.
 pH 5.5.
 Munsell 10YR 6/8 | Nil. |
| 02 | 1 x 1m | 425646E 5714226N | **Unit 1: 0 to 22cm** Friable compaction and moderately sticky dark brown clayey silt. Very damp. Frequent fine grass roots. Small (10-15mm), infrequent, natural quartz fragments. Fine charcoal flecks throughout. Diffuse boundary to Unit 2.
 pH 6.5
 Munsell: 10YR 2/2.
Unit 2: 22 to 46cm Very hard, heavily cemented silty sand – dry. Small (10-15mm), infrequent, natural quartz fragments. Large, angular chunks of charcoal to 42cm depth. Size up to 4cm. Clay mottling from 36cm. Clear boundary to Unit 3.
 pH 6
 Munsell 10YR 5/2
Unit 3: 46 to 50cm Firm, compact, moderately sticky silty clay. Deposit damp. Mottling of deposit between black/brown and dark brown. Small (10-15mm), infrequent, natural quartz fragments.
 pH 5.
 Munsell 7.5YR 4/6 & 10YR 2/1
Unit 4: 50cm + Very hard and compact clay. Orange to dark yellow in colour.
 pH 5
 Munsell 10YR 4/6 | Nil. |
| 03 | 1 x 1m | 425513E 5714231N | Undulating hills. Survey Unit 1. Terrace to east of Golden Creek. | **Unit 1: 0 to 10cm**
Semi-compact, well sorted, dark grey silty clay mix. 80% silt and 30% clay. Moist with small (less than 1cm) quartz pebbles. Dense fine root system.

pH 5.5
Munsell: 10YR 3/1

Unit 2: 10 to 33cm
Semi-compact, well sorted, dark grey silty clay. Clay content increasing slightly to approximately 40%. Fine charcoal flecks throughout. Small (1-2cm) quartz pebbles throughout. Dense, fine roots continuing. Increasingly compact with depth.

pH 5.5
Munsell: 5YR 4/1

Unit 3: 33 to 60cm
Well sorted silty clay. Clay content continuing to increase with depth to approximately 50% of content. Charcoal flecks decreasing with depth. Quartz pebbles continuing with larger (*3-4cm) pebbles also present. Semi moist. Increasingly compact with depth. Clay increasing with depth to 33cm where a yellow clay extends across test pit.

pH: 5.5

Unit 4: 60cm +
Clay

Nil|
| 04 | 1 x 1m | 425453E 5713687N | Undulating Hills. Survey Unit 1. | **Unit 1: 0 to 14cm**
Moderately sorted, very dark grey silty clay. Approximately 65% clay and 35% silt. Dense fine roots throughout. Occasional, very fine charcoal flecks. Quartz pebbles (1-2cm) throughout.

pH: 6.5
Munsell: 10YR 3/1

Unit 2: 14 to 22cm
Increasingly yellow, very compact clay. Occasional fine grass roots. Quartz pebbles continue. Very infrequent fine charcoal flecks. Solid clay base at 22cm.

pH: 6
Munsell: 10YR 6/6

Unit 3: 22cm +
Clay

Nil.
<table>
<thead>
<tr>
<th></th>
<th>1 x 1m</th>
<th>425369E 5713851N</th>
<th>Unit 1: 0 to 15cm</th>
<th>Nil.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Undulating Hills. Survey Unit 1. Side of Terrace to NE of Golden Creek.</td>
<td>Moist, well sorted, loose, very dark grey sandy silt. Dense, fine grass roots. Small (<1cm) and larger (2-5cm) quartz pebbles. Fine charcoal flecks through-out. pH: 5.5 Munsell: 10YR 3/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 2: 15 to 20cm</td>
<td>Unit 3: 20 to 30cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loose, moist, well sorted, dark grey silty sand. Quartz pebbles continue and becoming larger. Very fine charcoal flecks – occasional. pH 5.5 Munsell: 10YR 3/1</td>
<td>Very compact quartz gravel and silty sand. pH 5.5 Munsell 10YR 3/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 4: 30 to 50cm</td>
<td>Clay increasing with depth. Water seeping into test pit. Clay base at 50cm</td>
</tr>
</tbody>
</table>
Table 6 Results of Shovel Probe Excavations

<table>
<thead>
<tr>
<th>No.</th>
<th>Area</th>
<th>Location (GDA94)</th>
<th>Stratigraphy</th>
<th>Cultural Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>40 x 40cm</td>
<td>425604E 5714279N</td>
<td>Unit 1: 0 to 16cm
Very dark brown sandy silt. Fine textured. Dense, fine grass roots. Occasional small (<1cm) quartz pebbles.
pH 6
Munsell: 10YR 2/2.</td>
<td>Nil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floodplain west of unnamed creek. Survey Unit 2.</td>
<td>Unit 2: 16 to 43cm
Firmly compacted, dark greyish brown silty sand. Occasional fine charcoal flecks. Infrequent small quartz pebbles.
pH 6
Munsell 10YR 4/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 3: 43 to 49cm
Hard, compacted very dark grey to brown silty sand. Occasional small quartz pebbles. Yellow clay mottling from 46cm.
pH 5
Munsell 10YR 4/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 4: 49cm +
Very hard, dark yellow to brown clay.
pH 5.5
Munsell: 10YR 4/6</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>40 x 40cm</td>
<td>425673E 5714222N</td>
<td>Unit 1: 0 to 21 cm
Very dark brown, loose, sandy silt. Dense fine roots.
pH: 6
Munsell: 10YR 2/2</td>
<td>Nil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floodplain west of unnamed creek. Survey Unit 2.</td>
<td>Unit 2: 21 to 47 cm
Dark grey to brown silty sand. Weak compaction. Small (10-15mm) quartz pebbles)
pH:5.5
Munsell: 10YR 4/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 3: 47 to 68 cm
Hard, compact, very dark brown silty clay. Occasional small quartz pebbles.
pH: 6
Munsell: 10YR 2/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 4: 68 to 70 cm
Very hard, compact clay. Dark yellow to brown in colour. Mottled appearance.
pH: 6
Munsell: 10YR 4/6; 10YR 2/2</td>
<td></td>
</tr>
</tbody>
</table>
| 03 | 40 x 40cm | 425686E 5714173N | Floodplain west of unnamed creek. Survey Unit 2. | **Unit 1: 0 to 15cm**
Weak compaction, dark brown sandy silt. Dense fine grass roots.
pH: 6
Munsell: 7.5YR 2.5/1
Unit 2: 15 to 29cm
Firm, compacted, dark grey silty sand. Fine charcoal flecks throughout. Small (10-35mm) quartz pebbles from 21cm.
pH: 5
Munsell: 7.5YR 4/1
Silcrete artefact located during sieving of deposit from 25-30cm.
Unit 3: 29 to 67cm
Hard, compacted, orange and grey silty clay. Deposit mottled.
pH 6
Munsell: 10YR 6/8; 10YR 3/2
Unit 4: 67 to 70cm
Highly compacted brownish yellow silty clay.
pH 6
Munsell: 10YR 6/8 | **Unit 2:** Silcrete artefact located during sieving of deposit from 25-30cm.
Nil. |
| 04 | 40 x 40cm | 425686E 5714178N | Floodplain west of unnamed creek. Survey Unit 2. 5m north of SP 03. | **Unit 1: 0 to 17cm**
Weakly compacted, very dark brown sandy silt. Dense fine root system. Small (10-15mm) quartz pebbles.
pH 6
Munsell: 7.5YR 2.5/1
Unit 2: 17 to 35cm
Very hard and compacted, dark grey silty sand. Deposit re-cemented. Large (up to 10cm) quartz pebbles.
pH 5.5
Munsell: 7.5YR 4/1
Unit 3: 35 to 42cm
Very hard, brown and yellow silty clay. Small to large quartz pebbles.
pH 6
Munsell: 10YR 6/8; 10YR 2/1
Unit 4: 42 to 44cm
Very hard, brownish yellow clay.
pH 6
Munsell: 10YR 6/8 | Nil. |
<table>
<thead>
<tr>
<th>Location</th>
<th>Dimensions</th>
<th>GPS Coordinates</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>40 x 40cm</td>
<td>42568E 5714173N</td>
<td>Floodplain west of unnamed creek. Survey Unit 2. 5m west of SP 03</td>
<td>Unit 1: 0 to 15cm Weakly compacted dark brown sandy silt. Moist. Dense, fine root system. Extensive bioturbation. Small (10-15mm) quartz pebbles. pH 6 Munsell: 7.5YR 2.5/1 Unit 2: 15 to 45cm Very hard, dark grey silty sand. Deposit recemented. Small quartz pebbles. pH 5 Munsell: 7.5YR 4/1 Unit 3: 45 to 47cm Very hard, brownish yellow clay. pH 5 Munsell: 10YR 6/8</td>
</tr>
<tr>
<td>06</td>
<td>40 x 40cm</td>
<td>425686E 5714168N</td>
<td>Floodplain west of unnamed creek. Survey Unit 2. 5m south of SP 03</td>
<td>Unit 1: 0 to 16cm Weakly compacted, greyish brown sandy silt. Moist. Dense, fine root system. Small (10-15mm) quartz pebbles. pH 5.5 Munsell: 10YR 2.5/2 Unit 2: 16 to 32cm Very hard, dark grey silty sand. Deposit recemented. Small quartz pebbles. pH 5 Munsell: 7.5YR 4/1 Unit 3: 32 to 58cm Very hard, brownish yellow sandy clay. pH 5 Munsell: 10YR 4/6</td>
</tr>
<tr>
<td>Unit</td>
<td>Description</td>
<td>Munsell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: 0 to 9cm</td>
<td>Weak, friable, very dark brown sandy silt. Dense fine root system.</td>
<td>7.5YR 2.5/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: 9 to 18cm</td>
<td>Friable, compact, dark grey silty sand. Roots decreasing with depth., very fine charcoal flecks throughout.</td>
<td>7.5YR 4/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: 18 to 22cm</td>
<td>Friable, compact dark brown/black sandy silt. Small (10-15mm) quartz pebbles.</td>
<td>7.5YR 2.5/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: 22 to 40cm</td>
<td>Firm, compact, dark greyish brown silty sand. Deposit re-cemented. Occasional small quartz pebbles. Occasional, fine charcoal flecks.</td>
<td>10YR 4/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5: 40 to 50cm</td>
<td>Firm, compact, grey silty sand.</td>
<td>10YR 4/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6: 50 to 68cm</td>
<td>Firm and moderately sticky, dark grey sandy clay. Occasional, small quartz pebbles.</td>
<td>7.5YR 4/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7: 68 to 70cm</td>
<td>Strong, compact clay. Dark yellow to brown in colour.</td>
<td>10YR 4/6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Munsell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 0 to 25cm</td>
<td>Weak, friable, dark grey sandy silt. Very small (5-12mm) quartz pebbles throughout. Occasional very fine charcoal flecks.</td>
<td>10YR 4/1</td>
</tr>
<tr>
<td>2: 25 to 60cm</td>
<td>Very firm and sticky, light grey to yellowish brown sandy clay. Small quartz pebbles continuing throughout. Clay mottling.</td>
<td>7.5YR 7/1; 10YR 5/8</td>
</tr>
<tr>
<td>3: 60cm+</td>
<td>Strongly compacted, dark yellow and brown clay.</td>
<td>10YR 4/4</td>
</tr>
<tr>
<td>09</td>
<td>40 x 40cm</td>
<td>425541E 5714138N</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Undulating hills. Survey Unit 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 1: 0 to 10cm Weak, friable, very dark brown clayey silt. Dense fine grass roots. pH 6 Munsell: 10YR 2/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 2: 10 to 40cm Firm and moderately sticky, dark grey sandy clay. Very damp. pH 5 Munsell: 10YR 4/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 3: 40 to 44cm Firm and sticky, brownish yellow clay. Reached water at 44cm. pH 5 Munsell: 10YR 6/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>40 x 40cm</th>
<th>425527E 5714090N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undulating hills. Survey Unit 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 1: 0 to 12cm Weak, friable, very dark brown clayey silt. Dense fine grass roots. pH 6 Munsell: 10YR 2/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 2: 12 to 65cm Firm and moderately sticky, dark grey sandy clay. Fine roots decreasing with depth. Small (10-15mm) quartz pebbles throughout. Very fine charcoal flecks throughout. pH: 5 Munsell: 10YR 4/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 3: 65 to 70cm Firm and very sticky, brown/yellow clay. pH: 5 Munsell: 10YR 6/8 Reached water at base of probe.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>40 x 40cm</th>
<th>425515E 5714040N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undulating hills. Survey Unit 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 1: 0 to 10cm Weak, dark grey sandy silt. Dense, fine root system. Occasional small (10-15mm) quartz pebbles. pH: 6 Munsell: 7.5YR 4/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 2: 10 to 24cm Firm, brown silty sand. Fine charcoal flecks throughout. Quartz pebbles continue. pH 5.5 Munsell: 10YR 5/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 3: 24 to 36cm Strong and compacted, moderately sticky, grey to brown sandy clay. Large (up to 10cm) quartz pebbles. Fine charcoal flecks continue, but decrease with depth. pH: 5 Munsell: 10YR 5/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 4: 36 to 50cm Strong, compact and sticky, yellow clay. pH: 5 Munsell: 10YR 7/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil.</td>
<td></td>
</tr>
</tbody>
</table>
| 12 | 40 x 40cm | 425453E 5713990N | **Unit 1: 0 to 13cm**
Weak, friable very dark brown/black sandy silt. Dense fine grass roots. Occasional small (10-15mm) quartz pebbles.
pH 6
Munsell: 7.5YR 2.5/1 |
| Unit 2: 13 to 36cm |
Firm, hard, dark grey sandy clay. Quartz pebbles continue.
pH 5.5
Munsell: 10YR 4/1 |
| Unit 3: 36 to 44cm |
Strong and very sticky brown/yellow clay.
pH 5.5
APPENDIX 6

CRITERIA USED FOR SCIENTIFIC AND CULTURAL SIGNIFICANCE ASSESSMENT
The following Appendix presents the cultural and scientific significance assessment ratings of Aboriginal places identified within the activity area.

Assessment of place significance is complex and encompasses a range of heritage values. The heritage values of a site or place are broadly defined as the ‘aesthetic, historic, spiritual scientific or social values for past, present or further generations’ (Australia ICOMOS, *The Illustrated Burra Charter* 1999). Cultural significance considers aesthetic, historic, spiritual and social values, while scientific significance is considered separately. A detailed explanation of the assessment process for both cultural and scientific significance follows. Place ratings are based on a detailed and transparent set of queries.

Aboriginal Places – Cultural & Scientific Significance

The cultural and scientific significance assessment for places recorded during this complex assessment are based on the criteria presented in Section 6. The specific cultural and scientific significance assessment rating of individual stone artefact scatters relevant to the present activity area are presented in Tables 2 & 3.

Aboriginal Places – Cultural Significance

Cultural Significance

Where places/sites have a demonstrated variable and specific ‘cultural significance’, then the Burra Charter conservation principles take precedence. Where communities cannot provide specific evidence for cultural significance for a site/location, general scientific significance assessment is to be adopted. It is assumed that all cultural material will have generalised cultural significance to Aboriginal people.

Aesthetic Significance

‘Aesthetic value includes aspects of sensory perception for which criteria can and should be stated. Such criteria may include consideration of form, scale, colour, texture and materials of the fabric; the smells and sounds associated with the place and its use’ (Australian ICOMOS, *The Illustrated Burra Charter* 1999: 73).

In terms of Aboriginal places, few could be considered to have any specific aesthetic values according to the above definitions apart from some rock art, engravings and rock arrangements including economic structures such as fish traps and wells. Fish traps for example may also demonstrate an aesthetic ideal. Surface and sub-surface lithic deposits do not possess any aesthetic significance. This is consistent with the Australian Heritage Commission definition that aesthetic value has ‘a certain quality of a place which provides a sensory experience to a person [public or expert assessor], participation in or viewing a landscape, of such strength that is has a positive impact on human thought’ (Australian Heritage Commission, A Preliminary Proposal for Assessment of Aesthetic Values for Regional Assessment).

Does the place have:

- Abstract qualities (also known as scenic or visual quality)?
• Evocative responses (by both public and expert assessors)?
• Meanings (normally long-standing)?
• Landscape integrity (level of degradation)?
• Landmark quality (recognised by broader community)?

Historic Value

‘A place may have historic value because it has influenced, or has been influenced by, an historic figure, event, phrase or activity. It may also have historic value as the place of an important event. For any given place the significance will be greater where evidence of the association or event survives in situ, or where the settings are substantially intact, than where it has been changed or evidence does not survive. However, some events or associations may be so important that the place retains significance regardless of subsequent treatment’ (Australian ICOMOS, The Illustrated Burra Charter 1999: 73).

In terms of Aboriginal places, historic value can be represented as an identifiable sequence of long-term and contiguous occupation. Additionally, sites / locations may have been important during the historic period. Such sites / places / locations / routes should also be registered as Aboriginal historic places. The level of significance must be based on a regional review of the particular Aboriginal historic place type.

Does the place have:

• Evidence of long-term and continuous occupation?
• Associations with a particular event?

Social Value

‘Social value embraces the qualities for which a place has become a focus of spiritual, political, national or other current sentiment to a majority or a minority group’ (Australian ICOMOS, The Illustrated Burra Charter 1999: 73).

Aboriginal places can be socially significant in a number of ways. Specific places can have social significance to the general community (eg Willandra Lakes) and at another level, the general undeveloped landscape and all that it contains will have specific values to any traditional groups of Aboriginals that have maintained a more or less continuous presence on their traditional lands. Clearly, the best people to determine social value are traditional Aboriginal groups. In cases where information to assist in assessing social significance is difficult, specialist input, such as an anthropologist, needs to be sought. However, most places in Victoria relate to evidence of Aboriginal occupation over the past 6 000 years, though some places reflect much greater antiquity to early Pleistocene. These places have no specific traditional significance and are mostly unknown until located during archaeological survey.

The Commission has further refined criteria for assessing social value:
• Is it an existing community landmark or signature?

• Does the site / place have strongly symbolic qualities that define a community?

• Does the site / place have specific spiritual or traditional connection between past and present?

• Does the site / place represent / embody important collective (community) meanings?

• Does the site / place have associations with events having a profound effect on a community?

• Does the site / place represent attitudes, beliefs or behaviours fundamental to community identity?

• Does the site / place have an essential community function which leads to a special attachment?

• Does the site / place have longevity of use or association, including continuity to the present?

Aboriginal Places – Scientific Significance Assessment Criteria

‘The scientific or research value of a place will depend upon the importance of the data involved or its rarity, quality or representativeness to the degree which the place may contribute further substantial information’ (Australia ICOMOS, *The Illustrated Burra Charter* 1999: 73). Schiffer and Gumerman (1977: 211-212) consider ‘a site or a resource ... to be scientifically significant when its further study may be expected to help answer current research questions. This is scientific significance as defined as research potential’. Some places have evidence that may span many thousands of years and therefore have the potential to answer significant research questions regarding natural history, human evolution and adaptation.

The enactment of the *Aboriginal Heritage Act 2006* and *Aboriginal Heritage Regulations 2007* has required the introduction of a new scientific significance assessment framework to replace earlier frameworks (eg du Cros & Associates 1992). This framework rates Aboriginal places in greater detail so that more transparent cultural heritage outcomes and management strategies can be formulated. It comprises a structured query-based analysis which aims to produce detailed place assessments and clear links to place management recommendations. Selected place attributes examine in greater detail questions of place contents, condition and representativeness.

The body of evidence accumulated to date indicates that some place attributes are more significant than others. For example, stratified occupation deposits are usually in better condition, rarer and contain more significant cultural material than artefact horizons in environmental deposits. However, as archaeological data bases grow and change, the significance of criteria may change. This does not mean that the assessment of...
archaeological scientific significance is subjective but that it is affected by the interaction of various disciplinary forces including theory, research questions, methodology, knowledge base and the nature of the archaeological record.

After applying the following scientific significance assessment framework the place rating results are subsequently discussed within the known regional archaeological record (Section 6.4), for their research potential (Section 6.5) and presented in the Statement of Significance (Section 6.6). This process ensures that the scientific significance assessment framework has been applied reasonably.

Artefact Scatters

The stone artefact scatter is a common place-type found in Victoria and consequently comprises a high proportion of places recorded on the VAHR. Scientific significance is assessed in this investigation by the examining the following criteria.

Average Artefact Density

Places with higher average artefact densities per m² contain larger amounts and more varied information. Higher artefact densities usually represent more intensive and varied human behaviour. For example, focussed Aboriginal activity, such as longer-term campsites, will generally leave high concentrations of cultural material. In contrast, Aboriginal people traversing the landscape, dropping or otherwise discarding stone artefacts on a regular basis will often leave a very low density of artefacts. This is considered to represent ‘background cultural noise’ and is identified by artefact densities with less than five artefacts per m². The higher the density of stone artefacts within a place, the higher its scientific significance.

Formal artefact density calculations for place scientific significance assessments are based on the results of hand excavated 1m x 1m test pits and / or 50cm x 50cm probes. Once place boundaries are known the average artefact density is calculated by dividing the number of recorded artefacts by the extent of excavation (m²). Test pit and probe locations will usually be determined upon presence / absence evidence. The density scale is based on consulting experience. Place artefact density data from the VAHR is not used because it is not of sufficient accuracy for rating scientific significance. It is envisaged that benchmark data from the VAHR will be available in the future.

Extent of Artefact Densities

Larger places are usually considered to have higher scientific significance than smaller ones because they generally contain more information. Furthermore, larger places were likely the focus of more intensive and varied Aboriginal behaviour. If places have artefact densities of 46 per m² or above, then they are likely to be assessed having at least moderate scientific significance (see below). Based on consulting experience a significant size threshold is notionally considered here to be at least 50m x 50m in extent. Place-size data from the VAHR is not used because it is not of sufficient accuracy for rating scientific significance. It is envisaged that benchmark data from the VAHR will be available in the future.
Natural Soil Horizons

Natural formation processes may form natural soil layers or horizons by the laying down of sediments by natural agents such as wind and water (Isbell 2002; McKenzie et al 2004; cf Schiffer 1972, 1976: 15-16, 1983). These horizons may be subsequently created or destroyed by various post-depositional processes. The process of soil profile genesis and development may bury artefacts but without forming obvious anthroposols or occupation deposits. Artefacts found within natural soil profiles habitually form artefact horizons. The temporal and spatial integrity of artefact horizons will depend on the depositional and post depositional formation processes of these deposits. Generally they have less temporal and spatial integrity than intact occupation deposits and, with all other criteria being equal, have less scientific significance. They comprise the overwhelming artefact scatter type encountered during complex assessments.

Disturbance

Disturbance of cultural heritage places can take many forms and include both environmental and human agents not only at the time of deposition but also after places have been abandoned. Disturbance can be categorised as low, high or significant. Low disturbance is when archaeological deposits or features have little discernable disturbance so they are essentially intact and retain a high degree of spatial and temporal integrity. High disturbance is when agents have likely altered the temporal and spatial integrity to such an extent which has lowered their information potential and therefore scientific significance. Examples of high disturbance include deflation, native vegetation clearance, ploughing, rabbit burrowing, heavy stock trampling and stock rubs. Significant ground disturbance has altered the information potential of a place to such a degree that it has effectively destroyed the integrity of the place. Examples of significant ground disturbance include heavy natural erosion, or grading, excavating digging, dredging and deep ripping by machinery. The information potential remaining will essentially be the intrinsic attributes of the artefacts themselves.

Period and Number of Periods Represented

Most places contain stone tool assemblages attributed to the Australian Small Tool Tradition which may be dated 6,000 and 7,000 years ago (Hiscock & Attenbrow 2004). The landform and depositional context is also usually attributed to the period of latest landscape formation associated with present sea level stabilising 5,000 to 6,000 years BP (Marsden & Mallet 1975: 114-116; Bird 1993: 145; Douglas & Ferguson 1993: 387; Kershaw 1995: 669). Other periods, such as the Late Pleistocene and European Contact, are poorly represented in the archaeological knowledge base. Due to their rareness they are of high research interest and significance. Places with more than one period represented allow the investigation of cultural change, interaction and adaptation over a longer period of time. Based on the criteria of research potential and rarity, these places will have increased scientific significance.

Occupation Deposits, Surfaces and / or Features

An occupation deposit is formed by the laying down of deposits (artefacts and / or sediments) by human activities that bury artefacts and form distinct stratigraphic entities such as layers (eg dense lens of stone artefacts & bone between natural soil horizons,
stratified shell deposits) or features (eg hearths, occupation mounds). An occupation surface is a distinct layer or interface between depositional strata upon which human activities were carried out and artefacts / features deposited. Most commonly this may be represented by a prior land surface (eg soil horizon) that has been subsequently buried by natural soil horizons (eg dune deposits). Occupation deposits, features and surfaces have a high degree of spatial and temporal integrity and therefore will have higher scientific significance than archaeological deposits with lower integrity (eg artefact horizons in environmental deposits).

Multiple Artefact Horizons, Stratified Occupation Deposits, Surfaces and / or Features

Places with multiple artefact horizons, stratified occupation deposits, surfaces and / or features have the potential to investigate chronological change within places; often with greater time depth and chronological resolution compared to places with lower spatial and temporal integrity. They are rarer, have higher research potential, and therefore also have higher scientific significance. Occupation deposits, surfaces and features will likely have higher scientific significance than artefact horizons (see Appendix 6 – Glossary).

Natural History Potential

Some places have environmental evidence that may span many thousands of years and therefore have the potential to answer significant research questions regarding natural history, climatic and environmental conditions. This evidence can be used to investigate human evolution and adaptation. Generally this evidence is rarely found in Victorian places and has high research potential and scientific significance.

Representativeness

Representativeness refers to the regional distribution of a particular place-type and its scientific significance. It is assessed to whether the place is common, occasional, rare or very rare in a given region. Assessments of representativeness are biased by current knowledge of the distribution and numbers of places in a region. Current knowledge varies from place to place, depending on the extent and quality of previous archaeological research. Consequently, a place that is assigned low scientific significance based on other queries, but is considered a rare occurrence, may only be regarded as such in terms of current knowledge of the regional archaeology. Its rareness may not necessarily increase the place significance to moderate or above.

The representativeness used for cultural heritage places are:

- Common occurrence;
- Occasional occurrence;
- Rare occurrence;
- Very rare occurrence.

Ensuring a representative sample of significant place-types is preserved provides opportunities for research questions and techniques not yet developed to be available for 100
future archaeologists.

Stone artefact scatter places identified during this investigation are rated according to the following queries and answers:

What is the average artefact density per metre?

<table>
<thead>
<tr>
<th>Stone Artefact Density (per m²)*</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4</td>
<td>0</td>
</tr>
<tr>
<td>5 – 15</td>
<td>1</td>
</tr>
<tr>
<td>16 – 30</td>
<td>2</td>
</tr>
<tr>
<td>31 – 45</td>
<td>3</td>
</tr>
<tr>
<td>46 – 60</td>
<td>4</td>
</tr>
<tr>
<td>61 – 75</td>
<td>5</td>
</tr>
<tr>
<td>76 – 90</td>
<td>6</td>
</tr>
<tr>
<td>91+</td>
<td>7</td>
</tr>
</tbody>
</table>

*Minimum artefact size 10mm

If the average artefact density rates 46 artefacts per m² or above, is the density spatially extensive (more than 50m x 50m)?
No = 0, Yes = +1

Are artefacts within natural soil horizons?
No = occupation deposits (see below), Yes = 0

Are the natural soil horizons disturbed?
No = 0, Yes (high) = -1, Yes (significant) = -2

Are European Contact or Pleistocene / Early Holocene periods represented?
No = 0, Yes = +1

Is more than one period represented?
No = 0, Yes = +1

Are there occupation deposits, occupation surfaces and / or features?
No = 0, Yes = +1

Are there multiple artefact horizons, stratified occupation deposits, occupations surfaces and / or features?
No = 0, Yes = +1 (artefact horizons), Yes = +2 (occupation deposits, surfaces, features)

Is there an opportunity to research natural history (eg climate & environmental changes)?
No = 0, Yes = +1
Is the place a common, occasional, rare or very rare occurrence?
C or O = 0, Rare = +1, Very rare = +2

Artefact scatter places are rated according to the following scores from the detailed list of queries above:

<table>
<thead>
<tr>
<th>Score</th>
<th>Scientific Significance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Extremely Low</td>
</tr>
<tr>
<td>1</td>
<td>Very Low</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>Low – Moderate</td>
</tr>
<tr>
<td>4</td>
<td>Moderate</td>
</tr>
<tr>
<td>5</td>
<td>Moderate – High</td>
</tr>
<tr>
<td>6</td>
<td>High</td>
</tr>
<tr>
<td>7+</td>
<td>Very High</td>
</tr>
</tbody>
</table>
APPENDIX 7

HISTORICAL REPORT
Historical Assessment

90 Harmons Road, Fish Creek

22 October 2008

Prepared for:
Andrea Murphy
Tardis Enterprises Pty Ltd
Cultural Heritage Consultants

Project Number 8901109

Prepared by:
Christine and Chris Vickers
131 Merindah Road,
Lockwood South
Victoria 3551
abn #16255897656
Introduction

The site is located about 6 km east of Fish Creek and 9 km from Foster. The satellite photograph (Figure 3) shows the land to be open but with some buildings in the vicinity.

This report examines the land ownership and use since the time of white settlement.

Explorers and Early Settlers

In 1797/8 George Bass voyaged in a whale boat from Sydney to Westernport Bay. It was not known at that time whether Van Dieman’s Land (Tasmania) was connected to the mainland. It was suspected, by some mariners observing the wave patterns, that there was a passage through what is now known as Bass Strait. George Bass’ expedition proved that Tasmania was separate from the mainland; ships no longer had to go south of Tasmania on their voyage from England.

The expedition members were the first Europeans to document their exploration of Gippsland. Bass was not the first European in the area. He located some escaped convicts and the area was probably visited by sealers. Bass saw Ninety Mile Beach and spent one night ashore there on his return journey.\(^1\) He did not explore inland.

Gippsland remained unexplored until 1840 when Angus McMillan, a squatter, arrived at Port Albert having found a route across Gippsland from Melbourne. Simultaneously, Sir Paul Edmund de Strezelecki, a Polish Count turned explorer, arrived in Melbourne having crossed Gippsland from the Snowy Mountains.\(^2\)

The intentions of the two explorers were quite different. Strzelecki was interested in fame and honour. He omitted to recount that he had followed McMillan’s earlier route for over half his journey – implying that he had gone where no white person had before. On the other hand, McMillan was a reticent Scots cattleman who wanted his cattle into Gippsland before others heard of the new-found lands.

In 1840 McMillan selected, for himself, the Bushy Park station, located close to the present day town of Stratford. He set up a second station at Nuntin, near the mouth of the Avon River, for his backer, Captain Lachlan Macalister.\(^3\)

Port Albert became a strategic port for the development of Gippsland. The swamps to the north of Western Port Bay had isolated Gippsland from Melbourne. Port Albert became the gateway into Gippsland. But there was a need to find a land route to take livestock from Gippsland to Melbourne. Figure 5 shows a track passing in the vicinity of the study area. Further research is needed to determine the exact location of the track.

Land was taken up later in Gippsland than in other areas in Victoria. Much of it was not occupied until after it was surveyed in the 1880s when the railway was developed.

Historical Assessment

The 'John Hugh' run was taken up by Joshua Cowell in 1865. Figure 4 shows the extent; the study area falls within these bounds. Little is known about this run - the lease was forfeited in February 1868. There are no references to the John Hugh run in 'Pastoral Pioneers of Port Phillip' by Billis and Kenyon nor are there any papers in the 'Pastoral Run Papers' held by the Public Records Office. Further research is needed to determine if the run was actually taken up or to determine the cause of its early demise.

The area around Fish Creek was opened for selection in 1880s, but it was not before 1889 that Harry Farrell of Heidelberg applied to lease 400 acres including the study area. The vegetation is described as 'gum, stg bark, Titree, grasstree' with 'sandy loam'. The land is described as 'hilly'. The application states that there were no improvements on the land.

Harry was one of five brothers who took up land in the district. Some settled in the district – but not Harry. In 1894 the lease was cancelled as he had not paid the rent. The Bailiff reported:

Mr Farrell is now residing at Kyneton where he is keeping an hotel, & I know that he is in fair circumstances as he owns land and a quantity of stock and could pay the whole of rent.

The land was advertised as available for re-selection but it was three years before anyone applied. Elizabeth Laver, Spinster, of Fish Creek applied on 6 November 1897 for a lease under section 32 of the 1890 Land Act. The application was withdrawn by her father on 27 April 1898.

A new application was submitted under section 59 of the Land Act 1898 on 15 September 1899. The lease was granted. At the same time, adjacent blocks were taken up other members of the family. In 1903, the Laver family in Fish Creek were paying rates on nearly 5000 acres: Mabel Laver had 1017 acres, Robert Laver 900 acres, Mary Laver 1148 acres, Richard Laver 1177 acres as well as Elizabeth's holding of 694 acres.

The Land Department file notes that the land was share farmed with her father. It appears that each adult individual in the family applied for land separately so as to increase the size of the family holding and to bypass the limits on the area of land that

6 Pastoral Run Papers, VPRS 5920
7 Bryan Fitzgerald,'A Tale of Two Towns', South Gippsland Sentinel Times, Korrumburra, 1977,
8 Map prepared by George Hastings, Surveyor, 14 April 1890. File 543/121, VPRS5357/P0/4042
9 Application of Henry Farrell, 30 August 1889. File 543/121, VPRS5357/P0/4042
10 Meme Farrell, 'Fish Creek Good Old Days', South Gippsland Shire Historical Society, Sandy Point, 1977
11 Note from Bailiff 17 March 1894, File 543/121, VPRS5357/P0/4042
12 Victorian Government Gazette 24 August 1894
13 File Note, File 543/121, VPRS5357/P0/4042
14 Land Victoria, “Central Plan Office Record Plans”, Department of Sustainability and Environment, Melbourne, Put Away Plan W353(6), 1902
15 Rate Book 1903/4, Shire of South Gippsland, VPRS 596/P0/8
an individual could hold.

However, this does not seem to have been profitable. Elizabeth was continually behind with her rent and in 1911 the lease was transferred to James Patterson, a farmer of Toora; in 1920 it was transferred to Frederick James Wintle, dairy farmer.\(^{16}\)

In 1920 a new lease was issued.\(^{17}\) It was a condition of the lease that Wintle carry out improvements on the land – a report dated 25 September 1925 states that there is a hut 12 feet by 12 feet made of wood and iron with a value of £8 as well as fencing. In 1927, the lease was transferred to Margaret O'Farrell. The land was not good – it was described as 'poor steep country' and only 80 acres was pasture.\(^{18}\)

Margaret and her husband struggled to pay the rent. In February 1934, they wrote to the Lands Department requesting time to pay as the price for butter fat was low. They stated that they were trying to sell the lease.

The arrears of rent continued. In 1936 the Lands Department instructed the Bailiff to investigate. He reported:

> 'It appears as though the chance of payment of amount owing is hopeless and the longer they are left in occupation the larger will be the debt'

The Department requested that the O'Farrell's copy of the lease should be returned for cancellation. The O'Farrells refused to send it believing that they could prevent the cancellation. This prompted the Department to advise them that the return of their copy was just a formality; the Department held the original which they could cancel.

They managed to delay the cancellation of the lease and in 1939 it was transferred to Charles Snell. The purchase price covered the arrears of rent.

Charles Snell exercised the right to purchase the land, together with several adjoining blocks.\(^{19}\) Correspondence shows that he did not live in the area.

Thereafter, the study area became part of smaller lots as land was sub-divided. In 1953, 268 acres was sold to Harold Tuckett, a farmer.\(^{20}\) In 1965, he sold to Herman Price, another farmer.\(^{21}\) In 1978 the study area was included in 37 Ha (about 92 acres) sold to another farmer – Ronald Harmon.\(^{22}\)

In 1980, Maxwell Cameron, Port Captain of Foster bought the land – then 27 ha.\(^{23}\) He sold in 1983 to Arthur and Miranda Trener; they sold in 1987 to Chelston and Dierdre Miles. In 1991, the property was bought by Terence and Dianne Haines.\(^{24}\)

\(^{16}\) Lease, File 543/121, VPRS5357/P0/4042
\(^{17}\) Land Department File 1202/50.81.51, VPRS 5357/P0/4875
\(^{18}\) Report from Bailiff 22 December 1936, Land Department File 1202/50.81.51, VPRS 5357/P0/4875
\(^{19}\) Certificate of Title Volume 6414 Folio 784
\(^{20}\) Certificate of Title Volume 7854 Folio 060
\(^{21}\) Certificate of Title Volume 8580 Folio 654
\(^{22}\) Certificate of Title Volume 9305 Folio 003
\(^{23}\) Certificate of Title Volume 9396 Folio 387
\(^{24}\) Certificate of Title Volume 9509 Folio 786
Examination of telephone directories suggests that a house was built on the site after 1987 – the Miles are the first owners to be listed.

Conclusion

The study area has been owned by two families that were pioneers in the settlement of the Fish Creek district – the Farrells and the Lavers. However, this piece of land seems to have been of marginal use for agricultural enterprises. There is no evidence that the land was used for purposes other than agriculture until it became a residential block in the 1980s.

25 Rod Laver, the tennis player, is part of this family
Figure 1. Activity Area

Legend:
- Green star denotes Activity Location
- Parish: Wanga Wanga South
- LGA: South Gippsland

Figure 1 Activity Area Location
(VicRoads Ref: 103 C5)
Figure 2. Site Plan
Figure 3. Satellite Photograph26

26 Google Earth, http://www.earth.google.com/
Figure 4. John Hugh Run27

Figure 5. Stock Route

BIBLIOGRAPHY

ABBREVIATIONS

VPRS - Victorian Public Record Series (record held at PROV)
PROV – Public Record Office of Victoria
SLV – State Library of Victoria

DEPARTMENT OF SUSTAINABILITY AND ENVIRONMENT, LANDS VICTORIA, CERTIFICATES OF TITLE

- Volume 2692 Folio 337
- Volume 2773 Folio 584
- Volume 3100 Folio 994
- Volume 6389 Folio 631
- Volume 9482 Folio 142
- Volume 9512 Folio 656
- Volume 9512 Folio 652
- Volume 2069 Folio 149
- Volume 2819 Folio 632
- Volume 5196 Folio 009
- Volume 6581 Folio 097
- Volume 8900 Folio 410
- Volume 8911 Folio 595
- Volume 8911 Folio 594
PRIMARY SOURCE MATERIAL

5. Pastoral Run Plans, Historic Plans Collection, VPRS 15899
6. Pastoral Run Papers, VPRS 5920
7. Application to Bring Land under the Operation of the Transfer of Land Statute, File AP 19503, VPRS 460/P0/1786
9. Victorian Government Gazette
10. Rate Book 1903/4, Shire of South Gippsland, VPRS 596/P0/8
11. Land Department File 1202/50.81.51, VPRS 5357/P0/4875
12. Land Department File 543/121, VPRS5357/P0/4042
SECONDARY SOURCES

5. Maudi Thomson, 'Fish Creek Revisited', Fish Creek Centenary Committee, 1977
APPENDIX 8

SUMMARY OF LEGISLATION
Aboriginal Heritage Legislation

In 2006 the Victorian Government passed the Aboriginal Heritage Act 2006, to provide more effective protection of Aboriginal cultural heritage and broaden Aboriginal community involvement in decision-making arrangements.

The Aboriginal Heritage Act 2006:

- Replaces outdated State and Federal legislation governing the protection and management of Aboriginal cultural heritage in Victoria;

- Ensures that the protection of Aboriginal cultural heritage is an integral part of planning and land development processes;

- Provides increased certainty for developers and land managers in relation to the types of developments that require cultural heritage management plans;

- Establishes an Aboriginal Heritage Council, comprised of traditional owners, to provide a state wide voice for Aboriginal people in the management of cultural heritage. The council will register Aboriginal parties as cultural heritage decision makers for areas in Victoria, and advise the Minister for Aboriginal Affairs in relation to the protection of Aboriginal cultural heritage;

- Gives Registered Aboriginal Parties responsibility for protection and maintaining Aboriginal places and objects of cultural heritage significance within their areas, through providing cultural heritage management plans, advising on heritage permits, entering into heritage agreements and negotiating the repatriation of Aboriginal human remains;

- Provides dispute resolution and review mechanisms through mediation and the Victorian Civil and Administrative Tribunal;

- Provides a range of measures to improve compliance with, and enforcement of, the legislation, including cultural heritage audits, stop orders, modernised offences and penalties, and increased responsibility and accountability for inspectors;

- Retains the power of the Minister for Aboriginal Affairs to make interim and ongoing protection declarations over significance Aboriginal places or objects;

- Broadens Aboriginal community involvement in heritage protection to include traditional owners (The Allen Consulting Group 2007: 2-3).

Further information regarding the Act can be obtained from the AAV website at: http://www1.dpcd.vic.gov.au/aaav/
Aboriginal Heritage Regulations

Regulations have been developed to support the operation of the Aboriginal Heritage Act 2006. They provide further information on aspects of the Act, clarifying roles and expected standards that are required under the Act to:

- Maximise certainty about when and how to prepare a cultural heritage management plan, thereby better protecting Aboriginal cultural heritage and reducing delays to development;
- Ensure that fair payment is made for the evaluation of a cultural heritage management plan and that the Government receives appropriate payment for assessing applications for permits and advice on the Register (The Allen Consulting Group 2007: 4).

The regulations also specify:

- The circumstances in which a cultural heritage management plan is required;
- The standards for the preparation of a cultural heritage management plan and for a map in a cultural heritage agreement;
- Fees for evaluating a cultural heritage management plan;
- Fees for an application for a cultural heritage permit;
- Fees for an application to the Secretary for advice as to whether a record exists on the Register in relation to a nominated area of land (The Allen Consulting Group 2007: 3).

Further information regarding the Regulations can be obtained from the AAV website at: http://www1.dpcd.vic.gov.au/aaav/

In summary, all Aboriginal cultural heritage is protected under the Aboriginal Heritage Act 2006.

Part 4, Division 2 of the Aboriginal Heritage Act 2006 states that certain activities will require a Cultural Heritage Management Plan (CHMP) to be prepared. A CHMP is required for an activity if all or part of the activity area is deemed as culturally sensitive and that the activity is of high impact to the area. High impact activities are described in the Aboriginal Heritage Regulations 2007 Part 2, Division 5.

Alternatively, the proponent may prepare a voluntary CHMP. A voluntary CHMP can avoid delays if any Cultural Heritage Permits (CHPs) are required over the course of development works.

CHPs are required if an activity will harm, or is likely to harm, Aboriginal cultural heritage. Applications are made to the Department for Planning and Community Development. This process can take over 30 days to process.
APPENDIX 9

SUMMARY CVs
Andrea Murphy is a Senior Cultural Heritage advisor with extensive experience and qualifications in both indigenous and non-indigenous cultural heritage assessment and management, including EES & EIS projects, major urban excavations, desktop assessments, site survey, excavation, monitoring and production of site management strategies. Andrea has been the manager of Tardis Enterprises Pty Ltd, archaeologists and heritage advisors for 15 years and a heritage professional for more than 23 years. Andrea currently manages a large team of senior heritage advisors, field archaeologists, graphics department and research division.

AWARDS:
Winner of the 2003 UNESCO Asia-Pacific Cultural Heritage Conservation Award

QUALIFICATIONS
Bachelor of Arts (Prehistory) – La Trobe University
Master of Arts (Historic Archaeology) - La Trobe University

AFFILIATIONS
Member of:
Australian Society of Historic Archaeology
Australian Association of Consulting Archaeologists Inc.
Australian Anthropological and Archaeological Society
National Trust (VIC)
Royal Historical Society (VIC)

RECENT RELEVANT EXPERIENCE
MAJOR CULTURAL HERITAGE PROJECTS IN VICTORIA

- Pipeline Routes
- Optical Fibre Cable Routes
- Road and Highway/Freeway Infrastructure
- Rail Infrastructure – Urban and Regional Fast Rail
- Urban Developments
- Waterway Rehabilitation Works
- Wind Farms
- Archaeological Excavations
- Local Government Advisor and Project Manager
- Defence Advisor and Project Manager
- Parks Advisor and Project Manager
Laurinda Dugay-Grist is an archaeologist with fifteen years experience in both indigenous and historic Australian archaeology and middle eastern archaeology. Laurinda has extensive experience in all facets of cultural heritage management from the management of excavation projects, archaeological survey and testing programs, historic research, artefact analysis, and indigenous consultation, professional advice, formal presentations and lectures through to report production.

Laurinda's most recent experience has focused on indigenous and historic archaeological and cultural heritage management projects in south-eastern Australia.

QUALIFICATIONS
- Bachelor of Arts (Hons)
- Grad Dip. Archaeology
- MA Archaeology
- PhD in Prep

RECENT RELEVANT EXPERIENCE

MAJOR CULTURAL HERITAGE PROJECTS IN VICTORIA

- RESIDENTIAL HOUSING DEVELOPMENTS
- ROAD INFRASTRUCTURE
- PIPELINE ROUTE DEVELOPMENTS
- URBAN DEVELOPMENTS
- MIXED USE ZONE DEVELOPMENTS
- WATERWAY REHABILITATION WORKS
- NATIONAL AND STATE PARK MANAGEMENT PROJECTS
- REPORT WRITING AND PRODUCTION
ROBERT O’BRYAN

Archaeologist/heritage advisor

Robert O’Bryan is an archaeologist having graduated with an Honours Degree in Archaeology. Robert has experience in excavation, survey, archaeological testing, archaeological research, and artefact analysis. Robert completed his degree in 2008 and since then he has been actively involved in cultural heritage fieldwork. Robert also has experience in fieldwork supervision on projects in Victoria related to residential, industrial and infrastructure developments.

RECENT RELEVANT EXPERIENCE

MAJOR CULTURAL HERITAGE PROJECTS LOCATED AT:

- Bend Road, Keysborough, Victoria
- Victoria River, Omeo, Victoria
- Macarthur Wind Farm, Macarthur, Victoria
- Broadoak Drive Cranbourne, Victoria
- Morwell East, Victoria
- Banksia Peninsula, Victoria
- Boneo Road Mornington, Victoria
- The Sisters Sorrento, Victoria
- Thompsons Road Cranbourne, Victoria
- 'Greenhills' Property Pakenham, Victoria

SUMMARY OF EXPERIENCE

- Site Survey, Excavation and Recording
- Archaeological Fieldwork Supervision
- Archaeological Testing
- Archaeological Photography, Planning & Mapping
- Artefact Conservation, Cataloguing & Analysis
- Archaeological Background Research
- Excavation & Analysis of both Stone Artefacts and Marine Shellfish
- Excellent Written & Communication Skills
- Computer Literacy
- Report Writing & Production

QUALIFICATIONS

Bachelor of Archaeology, Honours – La Trobe University, 2008
Justin Yost is an archaeologist having graduated with an Honours Degree in Archaeology. Robert has experience in excavation, survey, archaeological testing, archaeological research, and artefact analysis. Justin completed his degree in 2007 and since then he has been actively involved in cultural heritage fieldwork. Justin also has experience in fieldwork supervision on projects in Victoria related to residential, industrial and infrastructure developments.

RECENT RELEVANT EXPERIENCE

MAJOR CULTURAL HERITAGE PROJECTS LOCATED AT:

- Bend Road, Keysborough, Victoria
- Victoria River, Omeo, Victoria
- Macarthur Wind Farm, Macarthur, Victoria
- Broad Oak Drive Cranbourne, Victoria
- Morwell East, Victoria
- Banksia Peninsula, Victoria
- Boneo Road Mornington, Victoria
- The Sisters Sorrento, Victoria
- Thomspons Road Cranbourne, Victoria
- Victorian Desalination Archaeological Salvage works

SUMMARY OF EXPERIENCE

- Site Survey, Excavation and Recording
- Archaeological Fieldwork Supervision
- Archaeological Testing
- Archaeological Photography, Planning & Mapping
- Artefact Conservation, Cataloguing & Analysis
- Archaeological Background Research
- Excavation & Analysis of both Stone Artefacts and Marine Shellfish
- Excellent Written & Communication Skills
- Computer Literacy
- Report Writing & Production
APPENDIX 10

CHECKLIST FOR COMPLIANCE WITH CHMP 10572
CHECKLIST FOR COMPLIANCE WITH CHMP 10572

<table>
<thead>
<tr>
<th>Discovery of unexpected cultural material</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Has all activity within 15m ceased?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Has the Heritage Advisor been advised?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Has the find/s been left in place?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Has the find/s been left in place?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 In relation to suspected human remains, has the Coroner’s Office been notified?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Has an appropriate mitigation / salvage strategy been developed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Has the mitigation / salvage works been implemented?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Have the salvaged finds / remains been treated in accordance with the direction of the RAP?</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Reburial

9 Has a suitably qualified archaeologist and physical anthropologist been engaged to fully document the remains and reburial?		
10 Has the reburial site been clearly marked?		
11 Have all details been provided to AAV?		
12 Has a strategy been developed to ensure no further disturbance will occur to the remains (such as Section 173 in the Planning and Provision Act)?		

Changes to Activity

| 13 Has statutory approval been obtained for any changes to the activity? | | |
APPENDIX 11

GLOSSARY
TYPES OF ABORIGINAL CULTURAL HERITAGE PLACES

Artefact Scatter: A surface scatter of stone artefacts is defined as being the occurrence of five (5) or more items of cultural material within an area of about 100 square metres (AAV 1993). Artefact scatters are often the only physical remains of places where Aborigines have camped, prepared and eaten meals and worked stone material.

Burials: Burial sites may occur in association with campsites, in mounds or shell middens or in specific burial grounds that lack any other cultural material. Softer ground was chosen for burials, and any sandy area can be expected to contain burials. Burial sites can contain one or a number of individuals. Burial sites and cemeteries are a common archaeological site type in the sand country adjoining the Murray River, though are a rare feature in the southern part of Victoria.

Contact Site: These are sites relating to the period of first contact between Aboriginal and European people. These sites may be associated with conflict between Aborigines and settlers, mission stations or reserves, or historic camping places. The artefact assemblage of contact sites will often include artefacts manufactured from glass.

Hearth: Usually a sub-surface feature found eroding out of a river or creek bank or in a sand dune - it indicates a place where Aboriginal people cooked food. The remains of a hearth are usually identifiable by the presence of charcoal and sometimes clay balls (like brick fragments) and hearth stones. Remains of burnt bone or shell are sometimes preserved within a hearth.

In Situ: Refers to cultural material that is discovered as being undisturbed and considered to be in its original context. That is, material which, when identified is considered to be in the same location as the time it was abandoned.

Isolated Artefact Occurrence: An isolated artefact is defined as being the occurrence of four (4) or less items of cultural material within an area of about 100 metres (AAV 1993: 1). It/they can be evidence of an ephemeral (or one off) activity location, the results of an artefact being lost or discarded during travel or evidence of an artefact scatter which is otherwise obscured by poor ground surface visibility.

Midden Sites: ‘Midden’ is a term borrowed from the Danish. It originally applied to the accumulations of shell and other food remains left by Mesolithic man in that country. Australian Midden sites are an accumulation of hearth and food debris, which has built up a deposit on the ground surface over a length of time. Middens are generally comprised of charcoal and either freshwater or coastal shell species, depending on the site’s location. Midden sites may also contain stone artefacts, and the food refuse of other native animals such as small mammals. Their thick deposit of burnt shells and dark grey/black deposit can distinguish midden sites within the landscape. Coastal shell middens are often found in close association with rock platforms. Freshwater shell middens are found in close proximity to areas that provided freshwater mussels.

Mound Sites: Mound sites are an accumulation of hearth (fire place) debris, which has over time built a thick deposit on the ground’s surface. Mounds are generally comprised of charcoal; burnt clay balls and burnt food refuse such as native animal bones. Mound sites may also contain stone artefacts. On rare occasions mound sites may also contain human burial remains. Mound sites can be distinguished in the landscape by their characteristic dark grey/black deposit and height above surrounding land. Mounds that have been utilised over long periods can obtain dimensions of over 100 metres in length and 1 metre in height. Mound sites are generally situated close to major streams, and large water bodies. In times of flood, mound sites are often become marooned, and provide dry land points from which surrounding resources could have been exploited.
Scarred Tree: Scars on trees may be the result of removal of strips of bark by Aborigines for the manufacture of utensils, canoes or for shelter; or resulting from small notches chopped into the bark to provide toe and hand holds for climbers after possums, koalas and/or views of the surrounding area. A scar made by humans as opposed to naturally made by branches falling off, etc. is distinguished by the following criteria: symmetry and rounded ends, scar does not extend to the ground, some re-growth has occurred around the edges of the scar, and no holes or knots present in the heartwood.

ABORIGINAL ARTEFACT TYPES

Artefact: Any product made by human hands or caused to be made through human actions.

Anvil: A portable flat stone, usually a river pebble, which has been used as a base for working stone. Anvils that have been used frequently have a small circular depression in the centre where cores were held while being struck. An anvil is often a multifunctional tool used also as a grindstone and hammer stone.

Blade: A long parallel sided flake from a specially prepared core. Blade flakes are twice as long as they are wide.

Bipolar: A core or a flake, which, presumably, has been struck on an anvil. That is, the core from which the flake has been struck has been rotated before the flake has been struck off. Bipolar platforms tend to indicate that the flake has come off a heavily worked core.

Core: An artefact from which flakes have been detached using a hammer stone. Core types include blade, single platform, multiplatform and bipolar forms. These artefacts exhibit a series of negative flake scars, each of which represents the removal of a flake.

Core Types:

Unidirectional cores - These cores have scars originating from a single platform, and all the flakes struck from the core have been struck in the same direction from that platform.

Bidirectional cores - These cores have two platforms, one opposite the other; flakes have been struck from each of the platforms, and thus from opposite directions.

Bifacial cores - These kinds of core have a single platform, but the flakes struck from it have been detached from two core faces.

Multidirectional cores - These cores have two or more platforms and there is no clear pattern, either in the orientation of the platforms or in the orientation of the scars resulting from the striking of flakes from those platforms.

Bipolar core - Nodules or cobbles that are flaked using an anvil. The resulting artefacts exhibit crushing on their proximal, distal and often their lateral margins, where they have been rotated.

Complete Flake: An artefact exhibiting a ventral surface (where the flake was originally connected to the core), dorsal surface (the surface that used to be part of the exterior of the core, platform and/or flake scar).

Broken Flake: Defined by the part of the flake remaining, i.e. proximal (where the platform is present), medial (where neither the platform nor termination is present), or distal (where the termination is present).

Lithic: Anything made of stone.
OTHER TERMS

Artefact Horizon: A discernable horizontal distribution of artefacts within an natural soil horizon. An artefact horizon has generally suffered a degree of post depositional disturbance that has affected the spatial and temporal integrity of the deposits and associated artefact assemblage.

Archaeological Site: A place/location of either Aboriginal or non-Aboriginal origin. Aboriginal archaeological sites have been formed prior to the European settlement of Australia, and may be in any of the forms outlined in section 1.

BP: Before present. The ‘Present’ is defined as 1950.

Cultural Heritage: Something that is inherited or passed down because it is appreciated and cherished. Categories of cultural heritage include; built structures and their surrounds, gardens, trees; cultural landscapes; sites; areas; precincts; cemeteries; ruins and archaeological sites; shipwrecks; sites of important events; commemorative sites; contents of buildings and significant relics, objects artefacts and collections of objects.

Cultural Landscape Integrity: The level of which the local landscape reflects the environment in which pre-contact Aboriginal people or early European settlers lived. The integrity includes all relevant aspects such as level and type of vegetation cover, hydrology, landforms and structures. A site located in a landscape of high cultural integrity has greater heritage value as it remains in context, and is therefore able to impart a greater level of information to the broader community.

Holocene, Recent or Postglacial Period: The time from the end of the Pleistocene Ice Age (c 10 300 BP) to the present day.

Potential: Based on collated existing data and site inspection an area or specific site may contain the potential for extant or archaeological deposits. Background research will present the most likely site types, contents and state of preservation. Relative levels of potential are described as Low (10-30% probability), Moderate (40-60% probability) and High (70% and above probability).

Pleistocene: The geological period corresponding with the last or Great Ice Age. The onset of the Pleistocene is marked by an increasingly cold climate. The oldest form of man had evolved by the Early Pleistocene, and in archaeological terms the cultures classed as Palaeolithic all fall within this period. The date for the start of the Pleistocene is not well established, and estimates vary from 3.5 to 1.3 million years ago. The period ends with the final but gradual retreat of the ice sheets, which reached their present conditions around 10 300 BP.

High Integrity Occupation Deposit: The laying down of deposits by human activities that bury artefacts to form distinct stratigraphic entities such as layers (eg dense lens of stone artefacts & bone between environmental deposits, stratified shell deposits) or features (hearth, occupation mounds). High integrity occupation deposits have a high degree of spatial and temporal integrity.

Occupation Surface: A distinct layer or interface between depositional strata upon which human activities were carried out and artefacts/features deposited. Most commonly this may be a prior land surface (eg soil horizon) that has been subsequently buried by later environmental deposits (eg dune deposits).

Visibility: Refers to the degree to which the surface of the ground can be observed. This may be influenced by natural processes such as wind erosion or the character of the native vegetation, and by land use practices, such as ploughing or grading. It is generally expressed in terms of the
percentage of the ground’s surface visible for an observer on foot (Bird 1992). For example 10% visibility equates to 10cm² per 1 m² of ground surface that is not covered by vegetation or soil deposit. The following applies to descriptions of ground surface visibility within this report.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>No visible ground surface</td>
</tr>
<tr>
<td>0 – 10%</td>
<td>Very Poor</td>
</tr>
<tr>
<td>10 – 30%</td>
<td>Poor</td>
</tr>
<tr>
<td>30 – 50%</td>
<td>Fair</td>
</tr>
<tr>
<td>50 – 70%</td>
<td>Good</td>
</tr>
<tr>
<td>70 – 90%</td>
<td>Very Good</td>
</tr>
<tr>
<td>90 – 100%</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Raw Material: Organic or inorganic matter that has not been processed by people.

Slope Wash: A term used to describe a specific process of re-deposition of cultural material. Cultural material (most often stone artefacts) that is situated on any sloping land is vulnerable to the affects of slope wash. The term relates to the downward movement of cultural material primarily due to erosion of their original context. This downward movement is most often caused by clearing of vegetation that exposes the ground surface to the affects of water erosion. The result is that cultural material will move down the slope over a period of time. How far material may move is dependent on the gradient and the intensity of the erosion.

REFERENCES

APPENDIX 12

CORRESPONDANCE LOG
CORRESPONDENCE LOG – 90 HARMONS RD, FOSTER

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Sender</th>
<th>Recipient</th>
<th>Regarding</th>
<th>Action</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.04.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Sonja Murray BLCAC</td>
<td>Geographical location of activity area and extent of BLCAC RAP application</td>
<td>N/A</td>
<td>BLCAC does not included activity area</td>
</tr>
<tr>
<td>27.04.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Jon Belling BFL</td>
<td>Geographical location of activity area and extent of BLCAC RAP application</td>
<td>N/A</td>
<td>BFL does not included activity area</td>
</tr>
<tr>
<td>27.04.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Discuss project. Confirm field work to begin. Discuss access & any other information required.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>28.04.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullett GKLWAC</td>
<td>Discuss project and request GKLWAC representation during field survey</td>
<td>Russell to contact me rep details.</td>
<td>Tentatively booked 07.05.2009</td>
</tr>
<tr>
<td>29.04.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullett GKLWAC</td>
<td>Letter confirming project and stating arrangements re. Project, payment etc</td>
<td>N/A</td>
<td>Confirming 07.05.2009 for field survey</td>
</tr>
<tr>
<td>29.04.2009</td>
<td>Email</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Plans of proposed subdivision</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Date</td>
<td>Method</td>
<td>Name</td>
<td>Contact</td>
<td>Message</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>29.04.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Confirming receipt of plans</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>01.05.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullet GKLWAC</td>
<td>Letter confirming project and stating arrangements re. Project, payment & confirming survey date for 07.05.2009</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>04.05.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullet GKLWAC</td>
<td>Letter confirming project and stating arrangements re. Project, payment & confirming survey date for 07.05.2009</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>04.05.2009</td>
<td>Phone</td>
<td>Russell Mullet GKLWAC</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Requesting a change for survey date. Changed to 14.05.2009</td>
<td>To inform client</td>
<td>N/A</td>
</tr>
<tr>
<td>04.05.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Informing on proposed survey date change to 14.05.2009</td>
<td>Confirm with Russell Mullet</td>
<td>N/A</td>
</tr>
<tr>
<td>04.05.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullet GKLWAC</td>
<td>Confirming 14.05.2009 for survey</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Date</td>
<td>Type</td>
<td>From</td>
<td>To</td>
<td>Subject</td>
<td>Action</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>11.05.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Confirming survey date and letter detailing project and requesting any additional information.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13.05.2009</td>
<td>Email</td>
<td>Russell Mullett GKLWAC</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Details of rep for 14.05.2009</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>15.05.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Andrea Murphy Tardis</td>
<td>Details following field survey. Informed no rep in attendance</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>15.05.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullett GKLWAC</td>
<td>Details following field survey. Informed no rep in attendance</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>02.06.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Andrea Murphy Tardis</td>
<td>Short report on results of field survey</td>
<td>N/A</td>
<td>To forward to client</td>
</tr>
<tr>
<td>10.07.2009</td>
<td>Email</td>
<td>Andrea Murphy Tardis</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Indicating client wants to go ahead with complex assessment. When can we organise?</td>
<td>Respond to queries</td>
<td>Organise field work</td>
</tr>
<tr>
<td>11.07.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Andrea Murphy Tardis</td>
<td>Confirming complex assessment to proceed and outlining times for possible field work – dependent on availability of field staff.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14.07.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Andrea Murphy Tardis</td>
<td>Informing no field staff available prior to 27th of July</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Date</td>
<td>Type</td>
<td>From</td>
<td>To</td>
<td>Message</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>16.07.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Russell Mullet GKLWAC</td>
<td>Requesting rep for fieldwork from 27th-31st of July.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>16.07.2009</td>
<td>Email</td>
<td>Russell Mullet GKLWAC</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Confirming dates. Will forward details of rep asap.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>16.07.2009</td>
<td>Email</td>
<td>Andrea Murphy Tardis</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Forwarded proposed field dates through to client.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>04.08.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Andrea Murphy Tardis</td>
<td>Summary of field results.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>07.08.2009</td>
<td>Phone</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Discussion re. Fieldwork, artefact located, CHMP.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13.08.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Request for up to date plans & construction details</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>31.08.2009</td>
<td>Email</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Request for up to date plans & construction details</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Date</td>
<td>Contact Method</td>
<td>Contact Details</td>
<td>Details</td>
<td>Notes</td>
<td>Client Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>31.08.2009</td>
<td>Email</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Plans and cross sections being prepared and will forward through when finalised</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>25.09.2009</td>
<td>Phone</td>
<td>Laurinda Dugay-Grist Tardis</td>
<td>Lloyd Hood GKLWAC</td>
<td>Any comments or response for draft report</td>
<td>No comment</td>
<td></td>
</tr>
<tr>
<td>20.11.2009</td>
<td>Email</td>
<td>Andrea Murphy Tardis</td>
<td>Graham Goldie Client</td>
<td>Any comments or response for draft report</td>
<td>Return phone call & email from client</td>
<td>Noted and included</td>
</tr>
<tr>
<td>20.11.2009</td>
<td>Email</td>
<td>Graham Goldie Client</td>
<td>Andrea Murphy Tardis</td>
<td>Draft comments</td>
<td>Noted</td>
<td>Incorporated in document</td>
</tr>
<tr>
<td>20.11.2009</td>
<td>Email</td>
<td>Andrea Murphy Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Request for signed AAV submission document</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>24.11.2009</td>
<td>Email</td>
<td>Andrea Murphy Tardis</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Any comments or response for draft report</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
<td>Sender</td>
<td>Recipient</td>
<td>Comments</td>
<td>Action Details</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>01.12.2009</td>
<td>Email</td>
<td>Garry Chisholm Beveridge Williams & Co. Pty Ltd.</td>
<td>Andrea Murphy Tardis</td>
<td>Draft comments</td>
<td>Return email from Client’s planning manager</td>
<td></td>
</tr>
</tbody>
</table>